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FOREWORD
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1 ABSTRACT

% An algorithm is presented for the two duty period schedul-
: ing problem. This integer programming problem has a binary
constraint matrix with two sets of consecutive ones in each
column. t each subproblem of a branch and bound procedure,

subgradient optimization is used to maximize the value of a

Lagrangean relaxation, which is a network flow problem. The
algorithm is implemented for the two duty period set parti-
tioning problem, With shortest path relaxations. A second
algorithm utilizing the unique properties of prime numbers is

developed for solving small subproblems. Computational results

Al .

are reported for several large problems., : 2
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PART I Lagrangean Relaxation and the Two Duty

Period Scheduling Problenm

CHAPTER 1

INTRODUCTION

In recent years we have witnessed considerable
advances in mathematical programming. One productive
area of concentration has concerned the use of
Lagrangean relaxation coupled with creative problenm
formulation. Manifestations have included Held and
Karp's (1970,1971) approach to the traveling salesman
problem, Fisher's (1972,1973) study of resource
constrained machine sequencing, and applications to
multiconmodity flow problems [Assad (197€), Kennington

and Shalaby (1977) ).

The notion of subgradients has also attracted a

great deal of research. Held and Karp (1970,1971) and

15
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Held, Wolfe and Crowder (1974) demonstrate its
application to the traveling salesman problem and the
multicoamodity maximum flow problem. Assad (1976) and
Kennington and Shalaby (1977) have used subgradient
optimization for the minimal cost multicommodity flow
problem. Etcheberry (1976) has utilized the technique
in a new algorithm for set partitioning and set covering
problems. Corpuejols, Fisher and Nemhauser (1977) have
used this solution strategy to solve facility location

models.

Another advaice in mathematical programming has
been the use of group theoretic and other knapsack
equivalents of arbitrary integer programs. Fisher,
Northup and Shapiro (1975) report computational
experience with the group theoretic approack. Garfinkel
and Nemhauser (1972) give an alternative knapsack
equivalent of an integer program. Glover (1967),
Shapiro and Wagner (1967) and Shapiro (1968) offer
methods for solving the knapsack problem in a dynamic

programming - shortest path context.

Another fruitful arca for recent research has been
the combination of algorithmic capabilities of

operations research and computer science. The use of




efficient list processing techniques from computer
science has in many cases led to order of magnitude
inmprovements in computational efficiency. Magnanti
(1976) and Magnanti and Golden (1978) survey many recent

instances.

In this thesis we embellish upon all of these
developments in the context of certain personnel
scheduling problems. Our research has extended into

tvo main areas:

1) the study of efficient dynamic programming -
shortest path solution technigues for certain integer |
programs. Part of this investigation has led to a new
method for transforming integer progrems into equivalent
knapsack problems. Computational experience has shown
the effectiveness of these techniques for small set

partitioning problenms.

2) the use of Lagrangean relaxation and subgradient
optimization for a certain class of personnel scheduling
problems. The two duty period set partitioning problen
we study has a natural shortest path relaxation. For

each subproblem in a branch and bound strategy we use an




iAo 2

iterative backward-forward reaching shortest path
algorithm and subgradient optimization for computing
strong bounds. This approach is an outgrowth of an
observation by Veinott and Wagner (1962) that certain
very specialized scheduling problems can be solved

directly as shortest paths.

The remainder of this introductory chapter
outlines the problems to be studied and their
applications. We first summarize the methodology of our
knapsack transformation and its use withiL a dynamic
programmaing - shortest path framework and then
introduce the personnel scheduling problem. We conclude
the chapter with a more detailed summary of the

remainder of this work.

1.1 Knapsack Equivalents of Integer Programs

Consider any integer programming fproblem (IP) (with

st meaning subject to)

18




where Aj and b are integer K-vectors in ZM and vwhere
S, a given subset of ZN, captures tlhe discrete nature
characteristics of the problem, e.g. S might be the set
zf of nonnegative integer N-vectors, the set of 0,1
integer vectors, or some other more complicated set.
Given a one-to-one linear mapping P from the integer

M
M-vectors Z into the real numbers R, (IP) may be

rewritten as an equivalent problem:
(KIP) Min CX
N
st Y P(A)X. = P(b)
ey . 2
J
X in S
In Chapter 5 we study the knapsack problem (KIP)

defined by a mapping P which utilizes the unigue

19




properties of the prime numbers. Given any distinct

prines P,,P,,...,Py, the mapping P defined by

M
P(z) = 2, z,1nP
{=1

is a one-to-one linear mapping of the integer

M-vectors into the real numbers. (KIP), derived with
this mapping P, is a knapsack problem with irrational
constraint coefficients. If the variables xj are bounded
and the irrational coefficients P(Aj),P(b) are closely
enough approximated by rational numbers A;,b*, the
resulting problem is equivalent to (KIP) and (IP) (see

Proposition 5.1, Section 5.3 for a proof).

A common solution strategy ior solving these
knapsack equivalents of integer programs is dynamic
programming or shortest paths. A useful property for
this algorithmic approach is the property of optimal
subsolutions. For integer programming problems (IP)
with s = zf, any partial solution X of an optimal

solution X* (i.e. ij X9, X is optimal for the

resources it uses. That is, X is optimal in -

20




Min cx
N N "
st 2 A.X.= 2, A.X
£ 00 7 & 1
A
X in 2

This property is very useful when one considers the
knapsack reformulation of (IP). The implication is,
when using dynamic programming - shortest path
techniques to solve (KIP), one may impose amn arbitrary
ordering upon the variables of tne solution. Rather
than consider every variable as an arc at every node of
the shortest path interpretation of (KIP), we need
consider only a subset of tie variables as arcs at

each node.

This property of optimal subsolutions depends upon
the problem having unbounded variables. However, for
some 0,1 integer problems the upper bounds are enforced
naturally by the constraiants (without explicit upper
bounds on variables) or by the otjective function. The
set partitioning problem is a case vhere the constraints
force each variable to be between zero and one.

Multiple choice constraints also have this property.

21




The set covering problem with positive cost coefficients
is an example where the objective function forces the

0,1 condition.

In Chapter 5 we exploit the property of optimal
subsolutions in our development of algorithms for the set
partitioning and set covering problems. We order the
variables according to the first rov with a nonzero
entry. Consequently, for the set partitioning problen,
at a given node of the shortest path problem we need
consider only those variables whose first entry is in
the first constraint not yet satisfied. For the set
covering problem we need consider only tLose variables

with an entry in the first constraint not yet satisfied.

These ideas have a broader application. In the
case of a gereral integer programming problem (IP) with
unbounded variables and a sparse coeificient matrix,
there also is a good ordering of the variables. At each
node of the shortest path interpretation of the knapsack
formulation of (IP) one need consider only those
variables which will contribute to satisfying the first

constraint not satisfied at that node. 1In this way, at

22




each node one need consider only a small subset of the

arcs leaving that node.

In this paper we will apply these ideas to a
particular problem - the two duty period set
partitioning scheduling problem, which 1s a special case
of the class of K duty period scheduling problems. Ue
will first use duality to develop a relaxation for the
two duty period scheduling problem. This Lagrangean
relaxation is an acyclic shortest path problem. e
suggest an iterative backward-forvard reaching algorithm
for solving the relaxation. Subgradient optimization is
used to maxiwmize the Lagrangean. The entire process is
embedded in a branch and bound strategy for solving the

scheduling problem optinally.

For subproblers with dimensions of manageable size,
we reformulate the subproblem as a knapsack problen
using the prime number mapping P. Because the original
subproblem is a set partitioning problem and has the
property of optimal subsolutions, the knapsack
formulation can be solved efficiently using a
predetermined ordering of the variables, as mentioned

earlier.




The computational results reported in Chapter 7
show that this solution strategy for the two duty period
scheduling problem has led to significant improvements
in solution times over the best existing algorithms for

this class of problems.

1.2 The Two Duty Period Scheduling Problenm

Personnel scheduling problems frequently give rise
to integer programming problems. We now introduce the
two duty period scheduling problem, an integer
programming problem with special structure. A special
case of the two duty period scheduling problem arises
when the problem is a set partitioning problem. This

special case will be called the Helsinki problenm.

1.2.1 Formulation of the Two Duty Period Scheduling

Problem

A two duty period scheduling problem may be defined

as

24




(P) Min cx
st AX $ Db

X Integer and Nonnegative

where b is an M X 1 vector, C is a 1 X N vector, X is an
N X 1 vector and where the entries, aij’ of the I X N
constraint matrix A are either zero or one and each
column of A has at most two segments of ones. A SEGMENT
of ones is a consecutive set of column elements aij'

i = k,k+1,-oo'k’p-1,k+p S\lCh that

aij = 1 i = k,k+1'-h.'k+p-1'k+P
or aij = -1 i = k'k+1,l--'k+P-1'k+P

Byt R if k> 1

By g, 0 if kép < M

The symbol § indicates that the constraints may
be equalities or either less than or greater than

inequalities.

A special case of the two duty period scheduling
problem which will receive much attention in this work
is the Helsinki problem or two duty period set

partitioning problem (HP)

25




(HP) Min cX

st AX = 1

where each column of A coantains at most two segments of
ones, the rest of the entries being zero. The right
hand side elements are all ones. The notation X = 0,1

indicates that each entry of the vector X is either 0 or 1.

1.2.2 Interpretation and Applicatiorns of the Two

Duty Period Scheduling Problenm 1

The two duty period scheduling problem arises very
naturally in personnel scheduling. Consider a situation

where there are a number of jobs each of whick must be

done by a single person for a given period of time. As
an illustrative example we consider buses and drivers.
It was in this form that the problem was first brought
to the author's attention by Markku Tamminen of the

Helsinki Data Center, Finland [Koljonen & Tamminen

(1977) }. Consider Figure 1.1 where rows 1 anéd 2
correspond to the two hours of operation of Eus A and

rows 3 through 8 correspond to six hours of continuous

26
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6
Min ) C,X

=1
Driver Schedules
Xl Xz x3 X4 XS X6 RHS

8 am 9 am 1 0 1 1 0 0 = 1

gasie {Qam—IOam O 00+ Bl o0 Dy g
9am - 10am O 1 0O 0 1 0 = 1

10 am - 11 am 0 1 0 0 1 Qidi=" f

Bus B 11 am - 12 m 0 1 1 0 0 1 = 1
M 12w - 1lpm 1 0 1 1 0 1 = 1
lpm~- 2pm 1 0 0 1 1 0 = 1

2pm- 3pm 0 1 0 O 1 0 =1

X, =0,1 jJ =1,2,3,4,5,6

An Example of the Two Duty Period Set Partitioning Problem
The Helsinki Problem

Figure 1.1
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operation of Pus B. Each colunn corresponds to a
possible driver schedule where an entry of 1 in the
matrix indicates that the driver of that column drives
the bus of that row for the hour corresponding to that
row. With the restriction that a driver drive no more
than one bus during his morning duty period and no more
than one (possibly different) bus during his afternoon
duty period, each column will contain at most two
segments. The problem is to find a set of minimal cost
of driver schedules such that each bus will have exactly

one driver during each of its hours of operation.

Other cases of two duty period scheduling problers
which have been cited in the literature include cyclic
staffing with overtime [bartholdi, Orlin & Ratliff
(1977) ] and déys off scheduling [Brownell & Lowerre
(1976) , Tibrewala, Philippe & Browne (1972), Bartholdi,
Oorlin & Ratliff (1977), Bartholdi & Ratliff (1977),
orlin (1977) ]. Glover and Mulvey (1976) refer to
implementations of project partitioning, job processing,
and monitoring and maintenance scheduling problems.
Other authors who have studied very similar problems
include Baker (1974, 1975), Maier-Rothe (1973), and

Segal (1974).
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A special case of the two duty period scheduling
problem is the circular ones and cyclic staffing
problem. This is a problem of scheduling personnel
wvorking continuous duty periods in cyclic time. See
Figure 1.2. Each colunn represents a possible work
schedule of one continuous duty period ir real time.
However, due to the arbitrary nature of starting a day
at midnight in the matrix representation, a duty period
beginning late one day and finishing early the next
becomes two segments in the corresponding colunn.
Efficient solution procedures are known for certain
cases of this problem [Orlin, Bartholdi & Ratiiff

(1977) J.

The two duty period scheduling problem can be
generalized to a K duty period scheduling problem where
each colunn of the constraint matrix contains at most K
segments. For example, the problem of scheduling
personnel who work five continuous duty periods in a
week might be formulated as a five duty period
scheduling problem in linear time or as a six duty

period scheduling problem in cyclic tinme.
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Min ;;ﬁﬁxj

X, X, X; X, X X, X RHS
12pm - 2am 0 0 1 1 0 1 0 = 3
{ 2 am - 4 am ¢ 1 31 3 @ & O = 2
. bam- 6am 0 1 1 0 0 O 0 = 1
j 6am- 8am 0 1 1 0 0 0 0 = 1
1 8am-10am 0 1 0 0 1 0 0 = 2
‘ 10am - 12 m g 1 6.6 1 6.0 = 3}
1 2m - 2pm 0 0 6 0 1 0 1 = 2
- 2pm- 4pm 0 0 0 0 1 0 1 = 1
! 4pm - 6 pm ) SRR s TR o (R (o S« LU o GO [ SR |
6pn- 8pm 1 O O O O O 1 = 1
8pm-10pm 1 0 1 0 O O 0 = 1
10pm=-12pm 1 0 1 1 0 0 0 = 2

X, Nonnegative, Integer j = 1,...,7

3

An Example of the Circular Ones - Cyclical Staffing Problem

Figure 1.2
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1.2.3 Solution Techniques

The simplest of this class of problems, the one
duty period scheduling problem, is known to have a
unimodular matrix [Veinott & Wagner (1962), Garfinkel &
Nemhauser (1972) ]J. 1In Chapter 2 we will demonstrate hLow

it may be easily reformulated as a network flow problen.

The general two duty period scheduling problem (P)
is a general integer programming problem. As such it
can be solved by a number of techniques - cutting plane,
enumeration, or group theoretic. However, no good
specialized algorithms have been developed which might
solve the two duty period problem in better times than
might be expected from a general integer programming

code.

1.3 organization of the Paper

1.3.1 An Algorithm for the Helsinki Problenm

In Chapter 2 we will indicate how we can take
advantage of the special structure of the two duty

31
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period scheduling problem to develop an algorithm for
solving it efficiently. In Chapter 3 wvwe will develop
this algorithm in great detail for the special case, the
Helsirki problem. We will develop a branch and bound
enumeration technique, in which the relaxation solved

for each subproblem will be-a shortest path problenm.

In Chapter 4 we introduce the Lagrangean relaxation
of the Helsinki problem in order to get tighter bounds
for our branch and bound procedure. To evaluate the
Lagrangean, we ne=d only solve a shortest path problen.
When subgradient optimization is used to maximize the
Lagrangean, the extra computational burden is more than
offset by the reduction in the number of subproblems

generated.

1¢3.2 Prime Numbers and the HELSINKI Algorithm

In Chapter 5 we demonstrate how prime numbers can
be used to reformulate any integer programming problem
as a knapsack problem. Interpreting this knapsack is

problem as a shortest path problem, leads to a very
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efficient solution procedure whenever the original

integer programming problem is a set partitioning
problem. The existence of this efficient solution
technique depends on the use of logarithms of primes as
multipliers in obtaining a surrogate constraint for the
original constraints. A somewhat less efficient
algorithm is developed for solving the resulting
shortest path problem when the original problem is a set

covering problen.

The prime number - shortest path method is severely
limited in the size of problem it can handle. However,
ve have incorporated it into the HELSINKI algorithm to
be used when the subproblem to be solved is of small
enough dimensions. Used in this way, the prime number -
shortest path technique is guaranteed to fathom a node
wvhen used. Ve found it to be very effective in
eliminating the need to separate nodes at the lower

levels of the tree search.
1.3.3 Side Constraints
In Chapters 5 and 7 we develop two procedures by

which side constraints of the fornm

33

e A o e ———r 2

i i it bt i




can be incorporated into the HELSINKI algorithm.

Computational experience with the constraint

2Xj,<=K

i=1

limiting the number of variables in the solution,
indicates that the side constraints tend to slow the
algorithm slightly. However, in sone cases,
particularly where the constraint cannot be easily
satisfied, its effect is to significantly increase the

speed of the algorithn.

1.3.4 Extensions, Discussion and Computational

Experience
Chapter 6 generalizes the results of the previous
chapters to the general two duty period scheduling

problem (P). We show that the relaxation is a network

34
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flov problem. Again, an enumerative procedure can be
used to solve the general two duty period scheduling
problem. Subgradient optimization is used to maximize

the Lagrangean relaxation of (P) at each subproblemn.

Oour computational experience with the HELSINKI
algorithm is presented in Chapter 7. Our algorithm has
been tested on four real world probles of average size
65 X 475 (as well as on a number of small test problems
artificially generated) . Since the Helsinki problem is
a set partitioning problem, specialized algorithms have
been developed for solving it quite efficiently.
However, the HELSINKI algorithm consistently
outperformed Marsten's SETPAR set partitioning algorithm
[ Marsten (1971) ], generally regarded as the best
available set partitioning algorithm. Tests done by
Tamminen on one test problem with a number of set
partitioning algorithms (including the Garfinkel &
Nemhauser algorithm) led that investigator to conclude
that SETPAR outperformed all others (thLe HELSINKI
algorithm was not developed at that time) [ KXoljonen &

Tamminen (1977) ].
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Chapter 8 deals with a special case of the two duty

period scheduling problem, the circular ones problenm.

This is a scheduling problem in cyclic time.

The results of the earlier chapters are generalized
for the K duty period scheduling problem in Chapter 9.
This K duty period problem corresponds to an integer
program with at most K segrents of ones in each coluan,
other entries being zero. Ue show that the same

theoretical development applies.

Finally, in the last chapter, we examine the
general methodology used in developing the HFLSINKI
algorithm. The idea.oi decoupling columns, which is
used to reformulate the Helsinki problem as a shortest
path problerm with side constraints, is shkown to be
applicable to near block diagonal matrices. There also

exists a corresponding concept of decoupling rows.
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CHAPTER 2

SPECIAL STRUCTURE OF THE TWO DUTY PERIOD SCHEDULING

PROBLEM

In this chapter we will develop a methodology for
solving the two duty period scheduling probliem. Fe will
consider first the one duty period scheduling problen
and show how it may be transformed to a network flow
problem. Then in Sections 2.4 and 2.5 we will show how
the two duty period scheduling problem may be
reformulated as a one duty period problem with side
constraints. Equivalently, the two duty period problem
may be reformulated as a network flow problem with side

constraints.
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2.1 The Opne Duty Period Set Partitioning Problem

The one duty period set partitioning problem may be

defined as

(1HP) Min CX-
st AX = 1
x = 0'1

where the entries of the M X N constraint matrix A are
either zero or one and each column Aj, Jo= Vgelae o Ny

contains at most one segment of ones. A SEGMENT S of Aj

is defined to be a subsct of rows, S = {p,p+1,...,p+k},

such that a;; =1 for all i in S (or a;; = -1 for all 't

in S) and a .= 0if p # 1 and a

= i +
p-1,1 0 if p+k #

M.

An example is given in Figure 2. 1.
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An Example of the One Duty Period Set Partitioning Problem (1HP)

Figure 2.1
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2.2 Transforming the One Duty Period Set Partitioning

Problem to a Shortest Path Problem

The one duty period set partitioning problem is
known to have a unimodular constraint matrix A
[Garfinkel & Nemhauser (1972), Veinott & Wagner (1962) ].
It follows that the one duty period set partitioning
problem can be represented as a shortest path problen
with (M+1) nodes and N arcs. The set partitioning
problem is to choose a set of columns that together
cover every row exactly once. Consider a segment S
covering rows p through p+k. This may be represented by
an arc originating at node p and terminating at node
ptk+1. See Figure 2.2. Then each feasible solution to
the one duty period set partitioning problem will

correspond to a path from node 1 to node M+1.

Bach arc of this shortest path interpretation of
the one duty period set partitioning problea is directed
in the sense of originating at the lowest row number in
the segment to which it corresponds. Consequently, the

graph is acyclic.
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Consider the following transformations on the M X N
constraint matrix A of (1HP). First append the trivial

constraint

giving the (M+1) X N constraint matrix [A'|b]. Let

T = (tij )

be the (M+1) X (M+1) nmatrix such that

tii = 1' i = 1,.-.,[14'1
ti—l'j = -1' i = 2'...'“*1
tij = 0, otherwise

See Figure 2.3. T simply subtracts from each row of A
(except the first) the preceding row. Since T is
nonsingular the constraint set [TA'|Tt] is eqguivalent to
[A[1]). The effect of the transformation has been to

create an equivalent problem (1HP*)
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000014.000
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001400000

014000000

-~ 0000000

. J

The 9 X 9 Transformation Matrix To

Figure 2.3
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(1HP*) Min cx y
st TA'X = T1 ,
X Integer, Nonnegative 8

vhere each column of (TA') contains exactly one 1 and

RSP a2

| one -1, the rest of the entries being zero. See Figure
2.4. In other words TA'X = T1 represents a shortest

| path problem.

2.3 Transforning the General One Duty Period Scheduling {

Problem to a Network Flow Problem

Consider now the more general one duty period 1 3

scheduling problem.

(1P) Min cx

st A 3 b

X Integer, Nonnegative

vhere, once again, each column of A contains exactly one

segment of ones, the rest of the entries being zero.
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The One Duty Period Set Partitioning Problem (1HP) of Figure 2.1

Transformed to a Shortest Path Problem (1HP*) by the use of Tg.

Figure 2.4
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See the example in Figure 2.5. Then (1P) can be

transformed to

(1p) Min CX
| st AX - IT =D

X Integer, Nonnegative

by the addition of surplus variables Y. See the example
in Figure 2.6. Notice that (1P) still satisfies the
criterion that each column have exactly one segment. It
is also the case for less than or equal to inequalities,
AX < b, that the addition of slack variables will lead
to a reformulation satisfying the criterion that each

column have exactly one segment.

In the same manner that (1HP) was transformed to an
acyclic shortest path problem, (1?) may be transformed

to a network flov problen.

Consider the example given in Figure 2.6. Adding

the trivial row
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gives the matrix in Pigure 2.7. Then, after applying
the transformation T, one dgets the resulting matrix
depicted in Figure 2.8. Our one duty freriod scheduling

problem has been transformed to a network flow problem.

In the one duty period set partitioning problen
(1HP) one unit of flow is to pass througk a path from ;
node 1 to node M+1. In the more general problem (1P) we
must have b, units of flow passing through each node i. 1
Consequently, at each node we may have to introduce or ?
withdravw units of flow. Precisely, we must introduce
(or withdraw) bi - bi_1 units of flow at node i, where
bo = 0. Now, we must add a source (Node 0) as well as a
sink (Node M + 2). See Figure 2.9, vwhere arcs
originating at node 0 introduce flow to nodes and arcs
ending at node 10 withdraw flow from nodes. If the
constraints of (1P) had all been equations or less than
or equal to inequalities, then the corresponding network
flow representation would have been acyclic. As it is,

each variable Yi becomes an arc from node i + 1 to

node i.
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The One Duty Period Scheduling Problem of Figure 2.5 Transformed by T9 to a Network Flow
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2.4 Reformulating the Two Duty Period Set Partitioning
Problem as a Shortest Path Problem with Side

Constraints

Consider now the two duty period set partitioning

problem which we will call the Helsinki problem (HP)

(HP) Min CX
st AX = 1

where each column of A contains one or two segments orf
ones, the rest of the entries being zero. An example is
given in Figure 2.10. This example corresponds to the
bus driver example given in Figure 1.1 in Chapter 1.

(HP) and the example in Figure 2.10 are both set
partitioning problems. However, koth have the special

property of having at most two segments in each column.

He know that the one duty period set partitioning

problem is easily solved. What implications does this

have for the two duty period set partitioning problem?
The shortest path interpretation of the single segment
set partitioning problem suggests a natural relaxation
for the two segment problem.
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An Example of the Two Duty Period Set Partitioning Problem

Figure 2.10
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Consider again the Helsinki problem example in

Figure 2.10. Suppose each colunmn Aj containing two

1
j

see Figure 2.11.

segments were separated into two columns, A, and A?,

each containing one segment, The
matrix in Figure 2.11 corresponds exactly to that of

Figure 2.1.

In terms of our shortest path intecpretation, each
variable xj of the original problem corresponds to two
arcs, x; and xi, (see Figure 2.12). Dividing the

colunns decouples the arcs (see Figure 2.13). If we

ippose the constraints that each arc must have the sane

value as its partner (i.e. x% = Xz, j =

) j
our new problem (HP') is equivalent to the original

1'.."“) then

problem. Proposition 2.1 formalizes this idea in

Section 2.6.

(HP') TR L L
st Aalxl o a2 x? =g
1" =~22* =0
xl ,x2 e 0'1
vhere c1 + C2 = Ce.
55
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X X, g X X5
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The Helsinki Problem of Figure 2.10 with Decoupled Columns

Figure 2.1l
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That is, the Helsinki problem is equivalent to an
acyclic shortest path problem with coufpled arcs.
Similarly, it can be shown that the more general two
duty period scheduling problem is equivalent to a

network flow problem with coupled arcs.

2.5 Reformulating the General Two Duty Period
Scheduling Problem as a Network Flow Problem with

Side Constraints

Consider now the general two duty period scheduling

problem (P) (see Figure 2.14)

(P) Min CX
st AX = b

X Integer, Nonnegative

vhere each column of A contains at most two segments of
ones, other entries being zero. 1Inequalities in the
original constraints may be transformed to eguations by

the use of surplus and slack variables.
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Replace each variable xj with two variables x; arnd
x§. Partition the non-zero entries of the A matrix into
two matrices Al and A2 where Al represents the first
segments of the variables and A2 rerresents the second
segments (where they exist). A = Al + a2, Dpivide the

1 2

costs C into C! anad c? where C = C~ + C“. The new

problem then is given by (P') (see Figure 2.15)
(') #in clx! + c*x?
st Alxl + 2a2x2 =
x1 ,x? Integer, Nonnegative

vhere cl+c?2 =c¢

To the constraints [Al|A2|b], append the trivial

constraint

o
n
o

to get a new constraint matrix [Al'laz'lb']. Then apply
transformation T to get [TAY' |[TA2'|Tb']. See Figure
2.16. Then [TAl' |TA2¢ |Tb' ] can be interpreted as a

network flow problem. And our reformulation of (P)
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The Two Duty Period Scheduling Problem of Figure 2.14 with

Decoupled Columns

Figure 2.15
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(P*) Min cl

st TAalvxl

can be interpreted as a networ
constraints. The nature of th
couple pairs of variables, for
same value. Hence, the two du
problem is equivalent to a net

coupled arcs.

x1 + c2x2
+ TA21x2 = b
Ix! - 1x2 = o

x1,X2 1Integer, Nonnegative '

k flow problem with side
ese side constraints is to
cing each pair to have the
ty period scheduling

work flow problem with

2.6 Decoupling Columns in Mathematical Programning

to Obtain Equivalent Problens

Consider the mathematical programming problen

(LP) Min CcX

st AX

or equivalently
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N
(LP) min 2 Cy Xy
3=l

N
st j%ijj:b

vhere Aj is the jth column of the MxN matrix A. Suppose

each vector [leaj] vere to be replaced by kj vectors

k k ¥
[Cj IAJ ] k - 1,2,n.~'kj

having the property that

¥
(. Ih, 3= I 1a® 3. 52 Yowes
b b j=1 J h]
¢ ; 1 ks
and simultaneously xj is replaced by (xj,...,xj]. Ve

can then create a nev problem (LP*) with these new

variables plus the new constraints x; = x?*‘, k =
1'..o,kj-1’ j = 1,4..“.
N kK
(LP*) Min 2 Y ckygk
=1 k=1 3 3
K%
st & &t e
j=1 k=1 I3
k k+1
xj xj - 0, k 1'o-o'kj 1
j = 1'.-.'“
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Proposition 2.1 (LP*) is equivalent to (LP).

Proof: Part 1
Let X = (xl ,x2 ""'xN ) be a solution to (LP)
let XY =1 g = 1 2memel k = 1,._.,kj

then xk* = gkHl* o o Toeenrk =13 3 = 102,008

E ]
NN N
wd 2 BE R ¥y «Faiox =n
[ R =5 0= S A = S
pit N5 N
and 2 2C§ x§*= ECS( xj =E ijj = CX
j=1 k=1 j=1 k=1 3=l
=D X* = (Xi*,xf*'c---lﬁl*lxé*rtcﬁlx:N*) is

a solution to (LP*) with value CX

Part 2

1% kp* Ky * :
Let X* = (X; ,...,X, ,...,XNN ) be a solution to (LP¥)

then x;*= xﬁ* B g = x'j‘i* e 3= 52,0000
1*
let xj ‘-‘xj j= 1'.-0'“
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3 k

N N h| h|
the c x = ( ck )yx = c k xk*
4 El 1 3231 ,f‘;“l il ;§lk=1 173

N Nk g
and 3 Aj Xy =2(Zalj‘)xj =3 3 akge
j=1 j=1 k=1 e

so X = (Xl Xy ""'XN ) is a solution to (LP)
8 K
*
with value 2 E Cl.( xl.‘ 5
j=1 kst 4

QED

2.7 A Solution Procedure for the Two Duty Period

Scheduling Problenm

Proposition 2.1 has shown that (P*) in Section 2.5
is equivalent to (P). Therefore, a relaxation of (P) is

(PR) Min Ayl + 2x?

st mlzl « 14222 = 3

which is simply a network flow problem. Since our

original problem (P), the two duty period scheduling

problem, is an integer programmiang problem; we can
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STEP 0

STEP 1

m‘,"@’\-’“- B

i implicit enumeration strategy.

incorporate the relaxation (PR) into a branch and bound

in the notation of Geoffrion and Marsten (1972),
outlines a solution procedure for the two duty period

scheduling problen.

Algorithm 2.1

Initialize value of the best soluticn so far:

INCUMBENT = INFINITY

Initialize the level of the tree search:
LEVEL = 0

Let the initial candidate problem be the
original problenm:

(CP) = (P)

Solve (CPR), the relaxation of (CP).
If VALUE(CPR) 2 INCUMBENT, GO TO STEP 2
If (CPR) solution is feasible in (P) tken
set INCUMBENT = VALUE (CPR) and
GO TO STEP 2
LEVEL = LEVEL + 1

GO TO STEP 2
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STEP 2 Create the next Candidate Problem (CP) at
this level of the tree search.
If none exists, GO TO STEP 3

GO TO STEP 1

STEP 3 IF LEVEL = 0, STOP
Back up in trec:
Set LEVEL = LEVEL - 1

GO TO STEP 2

The relaxation (PR) can be used with Algorithm 2.1
for a solution procedure for the two duty period
scheduling problem. For a significantly different ap-
proach to utilizing network relaxations for solving set
partitioning problems see Mulvey (1975) and Glover and

Mulvey (1976) .

Mulvey (1975) refornulates set partitioning problems
as transportation problems with side constraints (or
equivalently as a generalized network problem). The
number of arcs in the network flow problem is equal to
the number of nonzero entries in the constraint matrix
of the original set partitioning problem. Glover and

Mulvey (1976) also reformulate the two duty period
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scheduling problem as a network problem with side
constraints. For each variable xj with two seyments they

create two new nodes Uj and vj and an “all-or-none" arc
joining them. Rather than solve this network related
version of the problem directly, the authors propose a

heuristic solution technique.

The relaxation (PR) is very weak, to the point of
being useless. However, we have great freedom in
choosing [Cl,cz]; the only stipulation being
cl + ¢c2 = c. As we shall see in Chapter 4, by choosing
[Cl,C2] properly, we can greatly strengthen the relaxation
(PR). In fact with a moderate effort we can get (PR) to

be almost as strong as the LP relaxation of (P).
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PART II Implementation

CHAPTER 3

THE HELSINKI PROBLEM - THE RELAXATION

In this chapter we will discuss a special case of
the two duty period scheduling problem - the two duty
period set partitioning problem (or the Helsinki
problem). The two segment characteristic of the problen
allows us to use a minimum cost flow problem as a
relaxation. The set partitioning characteristic means
this relaxation is simply a shortest path problem. 1In
addition, because the Helsinki problem is a set
partitioning problem, we can reduce its dimensions by
logical considerations. In Section 3.3 vwe present an
algorithm for solving the two duty period set
partitioning problem. 1In the aext section we develop a
branching procedure to be incorporated into this
algorithm. In Sections 3.5 and 3.6 we introduce an
algoritam for solviny the shortest path relaxation.
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3.1 The Helsinki Problem as a Shortest Path Problenm

with Coupled Arcs

A special case of the two duty period scheduling

problem is the Helsinki Problem (HP)

(HP) Min CX
st AX = 1
X =0,1

where 1 is the N dimensional vector of ones and where

each column of A consists of one or two segments of

ones. Por example, see Figure 3.1. It was ia this !
form, a set partitioning problem, that Markku Tamainen |
of the Data Center of the Helsinki City Metropolitan

Area, first brought the two duty period scheduling

problem to the author's attention. The Helsinki problem.

arose in trying to schedule the city's bus crews using

mathematical programming.

Applying to (HP) the transformations developed in

Chapter 2 yields:




e

st

L B B I N ]

OCOO -~~~ OO0

CO it OO vt vt

- OOO~=~O

A OO™m~0O0

OO rmierd i OO

OOOO™=m~0O

J=1,2,...,6

Xj = 0,1

An Example of the Helsinki Problem

Figure 3.1
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(HP*) Min cYy + c2z
st (Y,Z2) in S

IY - 12 =0

vhere S is the set of solutions to a shortest path
problen. For notational convenience we have replaced
each variable xj with Yj (rather than x;) and Zj (rather
than Xg). See Figure 3.2. Using the terminology of

Geoffrion and Marsten (1972) we may write the relaxation

of (HP*) as

(HPR) Min Yt vyeclyg
st (Y,2) in S

Then a feasible strategy for solving (HP) is to
incorporate the relaxation (HPR) into a branch and bound
procedure, such as Algorithm 2.1. The relaxation (HPR)
is a shortest path problem with M + 1 nodes and (no more

than) 2N arcs.

We employ the following terminology. We say that a

column xj in (HP) corresponds *o two VARIABLES or ARCS

!J and zj in (HP*) and (HPR). UWe refer to the coupled

arcs !j and zj as PARTNERS. Two variables (of (HP#%))
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6 5
Min D+ Yz
33 373
j=1 j=1
st Yoy Yyl Wy B0 B, By Fg il RHS
P g e @ et et b e
06 6 0 0 1 0 1 0 0 0 0 = 1
0 0 16 B e e 0 1ve 9wy
¢ 0 .12 & & 4 H 0 1 6 0 = 3
g farN Begl 1w ilgsuerip T sy
¢ 1 6 6 & .1 B 't B 6.3 = 3
0“6 09 0 &1 01 e ‘- g
-0 6 3y B B 6.0 © 1 6 =« 4
Y, =z, §=1,2,...,5
¥, = 0,1 §=1,2,...,6
z, = 0,1 w12 035
vhere c§+c;-cj AL T R

The Helsinki Problem of Figure 3.1 Reformulated with Decoupled
Arcs :

Figure 3.2
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CONFLICT if there is a row covered Ly both variables
(i.e. each column has a one in the same row). HWe use
the terms RELAXATION and SHORTEST PATH PROBLEMNM

interchangeably. Similarly the terms VARIABLE (of

(HP*) ) and ARC are used interchangeably, as are KOW and
NODE (of the shortest path problem). Consequently, a
variable (of (HP*)) covers a row if and only if the
corresponding arc starts in or passes over that row. An J
arc starts at a node if and only if the corresponding
segnent of ones in the original Helsinki problem starts
at the corresponding row. An arc ends at a node if and
only if the corresponding segment of ones in the
original Helsinki problem ends at the row preceding the

corresponding row.

3.2 Logical Elimination for the Helsinki Problem

Algorithm 2.1 can be reformulated more specifically
taking into account the special features of both the set
partitioning problem (HP*) and the shortest pata
relaxation (HPR). Because the original problem (HP¥*) is
a set partitioning problem, we know that once a variable

is chosen (i.e. set equal to one), all variables which
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conflict with it may be eliminated (i.e. set egqual to

zero) .

Similarly, we can take advantage of the fact that
the reiaxation is a shortest path problem and that it is
obtained by decoupling arcs. Consegquently, what is true
of one arc is true of its partner. Therefore, when an
arc is chosen, we can eliminate all the arcs which
conflict with its partner as well as itseli. Of course,
vhen an arc is eliminated, its partmer is also

eliminated.

From the shortest path formulation it can be seen
that if no arcs enter a node, then all arcs leaving that
node may be eliminated. This is simply because po arc
leaving that node can participate in a solution to the
shortest path problem. Similarly, if no arcs leave a

node, all arcs entering that node may be eliminated.
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3.3 An Algorithm for Solving the Helsinki Problenm

Algorithm 2.1 outlines the general procedure for a
tree search. It is an interesting feature of the
algoritum which we will now develop that a node in the
search tree will often have more than two successor
nodes. At any given node, rather than choosing a single
separation variable (SEPVAR) to branch on, our algorithm
will choose a number or variakles in a manner we will
describe in Section 3.4. They will correspond to the
arcs starting at a given node in the shortest path
relaxation. Each branch at a node will correspond to
including exactly one of these arcs. See Pigure 3.3

corresponding to the example in Figure 3.2.

We have employed soue special notation in Figure
3.3. EBach circle corresponds to a node of the search
iree. The number within eack circle represents the
level on the search tree (i.e. the numker of separation
variables which have been chosen in reaching that node).
Each arc in Figure 3.3 corresponds to a branch. The
label on each arc indicates the separation variable at

that branch. For example, the label !1, on the branch
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leading to the second node on level 1, indicates that Yl

was set equal to one at that tranch.

The unusual aspect of the tree in Figure 3.3 is
that each node Las associated with it a height as well
as a level. The row numbers on the left hand side
indicate a node's height. Tue height of a node
indicates the first row of (HP*) which has not been
covered by the separation variables chosen in reaching
that node. In terms of the shortest path interpretation
of (HP), choosing a separation variable to be in the
solution corresponds to choosing an arc to be in the
path. Conseguently, the row number or the height of a
node in the search tree corresponds to the node in the
shortest path solution which has Leen reached as a
result of choosing separation variables (or arcs). For
example, choosing Y3 to branch on at level 0 brings us
to a node at level 1 and height 3. Row 3 is the first
row not covered by Y3. And the arc Y; ends at node 3 in
the shortest path interpretation. At any node of the
search tree eack branch corresponds to an arc which
begins in the first row not covered by the separation

variables chosen so iar (that row is just the height of

the node).
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Algorithm 3.1 reiterates, with greater specificity,

Algorithm

Algorithm

STEP 0

STEP 1

STEP 2a

2. 1.

3.1

INCUNBENT = INFINITY
LEVEL = 0

(Cp) = (HP)

(CPR) = (HPR)

Solve (CTPR)
IF VALUE(CPR) > INCUUBENI, GO TO STIEP 2a
IF (CPR) solution satisfies Y = Z tkhen
set INCUHBENT = VALUE(CPR) and
GO TO STEP 2a
LEVEL = LEVEL + 1

GO TO STEP 2b

Set SEPVAR(LEVEL) = PARTNER (SEPVAR(LEVEL)) = 0

Reinstate those variables eliminated at this
LEVEL because they or their partners
conflicted with SEPVAR(LEVEL) or its

partner.
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STEP 2b Create the next Candidate Probien (CP) :

Choose a new separation variahle for this level,
SEPVAR (LEVEL)

If none exists, GO TO STEP 3

Eliminate (i.e. set equal to zero) all
variables, and their fpartners, which
conflict with SEPVAR (LEVEL) and
PARTNER (SEPVAR(LEVEL))

Set SEPVAR (LEVEL) = PARTNER(SEPVAR(LEVEL)) = 1

GO I0 STLP 1

STEP 3 IF LEVEL = 0, STOP

Back up in tree: |
Reinstate all the separation variables

elipminated at this LEVEL
Set LEVEL = LEVEL - 1

GO TO STEP 2a

3.4 The Branchirg Procedure

The shortest path interpretation of the Helsinki

problem suggests a natural branching procedure. The
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original problem (HP) can be considered one of trying to
construct a shortest path such that for each arc
included in the path its partner is also included.
Consider then, the branching procedure as one of trying
to construct such a path. At the top level of the tree
solve the relaxation. Then choose as the separation
variable the arc in the relaxation solution wvhich begins

at node 1. See Figure 3.3.

A similar process is used to choose a separation
variable at all nodes of the decision tree. Each such
node corresponds to a partial solution (the set of
variables fixed to be in the solution by choosing
separation variables at each level in reaching this
node). To choose the next separation variable, solve

the relaxation. Then choose the first arc, say Yj, in

the shortest path solution that has not already been
chosen as a separation variable in reaching the present
node of the decision tree. Then Yj is the natural
candidate for the separation variable. At the next

level set Yj (and zj) equal to one and repeat the

process.




When a node is fathomed the separation variable at
the present level is eliminated and the variables which
vere eliminated at this level, because they conflicted
with this separation variable, are reinstated (i.e.
they become free variables with no fixed value). The
relaxation is resolved and a new separation variable is
chosen, if the relaxation is teasible, in the manner

described above.

This procedure is equivalent to binary branching
(tvo branches from each uode, one with the separation
variable set equal to one, and the cther equal to zero)
in the sense that choosinygy the next separation variable
at a level is equivalent to making a branch with the

(previous) separation variable set egual to zero.

3.5 Solving the Relaxatiomn

Step 2 of Algorithm 3.1 greatly reduces the size of
the candidate problem. Consider the exanple of Figure
3.2. The corresponding shortest path problem is given
in Pigure 3.4. Since Node 2 has no exit, we nmay

eliminate Yl and its partner Z, (see Figure 3.5). On
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Eliminate Yl and hence Z1

S ‘

Preliminary Logical Elimination

Figure 3.5
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the first branch, if we choose 13 as the separation
variable, then we may eliminate those arcs conflicting
with either Y, or Z, (see Figure 3.6). Similarly, at
the second possible branch from level 1, we may choose
Y, as the separation variable. Corsequently, we may
eliminate those variables (and their partners)

conflicting with either Y, or 2, (see Figure 3.7).

In the same manner, we can reduce the probienm size
by logical elimination at Step 1 of Algorithm 3.1, while

solving the relaxation problem (CPR). Our relaxation is

-a shortest path problem which we will solve with a

labeling algorithm. Consider the following forward
reaching algorithm for solving a shortest path problen

with M + 1 nodes [Denardo & Fox (1977) ]:
Algorithm 3.2

STEP 0 Let FORWARD LABEL (NODE) = INFINITY for each

node except NODE = 1, FORWARD LABEL (1) = 0.

Let NODE = 1.




Choose Y3 as separation variable and eliminate those arcs .

conflicting with Y3: (Yl), Y4 and their partners: (21), Za

Y3 chosen, so eliminate arcs conflicting with its partner 2 Y

3 ‘s
Y, e Z4 s

Branch 1 Level 0

Figure 3.6
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Choose Yé as separation variable and eliminate those arcs

conflicting with Ya: (Yl), Y3 and their partners: (Zl), Z3

YA chosen, so eliminate arcs conflicting with its partner 24:

(Zl), (23), ZS’ Y6 and their partners: (Yl)’ (Y3), Y5

Branch 2 Level O

Figure 3.7
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STEP 1 For each arc which begins at NODE, if
FORWARD LABEL(NODE) + COST(ARC) is less
than the FORWARD LABEL for ENDARC, the
node at which ARC ends, replace FORWAKD
LABEL of ENDARC with FORWARD LABEL (NODE) +

COST (ARC) .

STEP 2 Let NODE = NODE + 1. If NODE = M + 1 , STOP.

STEP 3 If FORWARD LABEL (NODE) < INFINITY, GO IO STEP 1.

GO TO STEP 2

Similarly there is a backward reaching algorithm.

See Figure 3.8.

3.6 An Iterative Backward-Forward Algorithm for

Solving the Relaxation

Note that if the branch and bound scheme has
already found a feasible solution there is an INCUMBENT

< INFINITY. 1In step 3, INFINITY may be replaced by

b AR i 2

INCUMBENT, making the algorithm stronger. However, an

even stronger test may be applied at step 3.
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Forward Reaching:

o) c¥o¥o¥o¥o¥o¥o

Generates a set of forward labels for each node j, 3= 102, ...,9,

indicating the cost of the cheapest path from node 1 to node i

Backward Reaching:

. 000000g0D

Generates a set of backward labels for each node j, b I B (R T

indicating the cost of the cheapest path from node j to node 9.

Shortest Path Algorithms

Figure 3.8
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Suppose the relaxation is solved first using the

backward reaching algorithm. This would result ir each
node having a BACKWARD LABEL iudicating the cost of the
cheapest path from that node to the M + 1st (last) node.
Now consider the implications for a subsecuently applied
forward reaching algorithm to the relaxation . The test

‘at step 3 may becone

If FORWARD LABEL(NODE) + BACKWARD LABEL (NODE) <

INCUMBENT, GO TO STEP 1

This test checks each node, to see if it is
possible for an arc ending or starting at that node to
participate in a solution better than the incumbent.
The new test at step 3 may allow us to eiiminate all
arcs (and their partners) whichk begin at the node being

considered.
However, because of the ccufpled arc nature of our
shortest path relaxation, it is better to instead add a

new test at step 1:

If FORWARD LABEL (NODE) + COST (ARC) + BACKWARD

LABEL (ENDARC) > INCUMBENT, eliminate ARC
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This new test at step 1 may allow the ARC
considered to be eliminated since it cannot participate
in a solution of the (CPR) better than the INCUMBENT.
When the arc is eliminated, its partner is also
eliminated. This new test at step 1 makes the new test

at step 3 redundant. See Figure 3.9.

The advantage of these new boundiny tests is that
they may eliminate arcs (and consequently their
partners). The tests reduce the problem size and

tighten the relaxation by eliminating fpartner arcs.

Of course the forward labels can be used in
strengthening the backward reaching algorithm in a
similar manner. An iterative process of solving the
shortest path problem by backward and forward reaching
can be used until equilibrium is reached, (i.e. until no
arcs are eliminated in a full cycle of the algorithm -

one backward pass and one forward pass).

Algorithm 3.3 is the solution procedure for solving
the shortest path relaxation (CPR) in Algorithm 3.1,
which incorporates these ideas. FORWARD (BACKWARD) STOP

is a £lag to let us know whether or not the last forward
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L0 O @ 6.6 @ Gl

y . A\ 4 \ 4 A
‘ ;a T BL'{ '
Forward Label Backward Label

for node 4 for node 6
Arc Yj may be eliminated if FORWARD LABEL(4) + COST(Yj)

e

+ BACKWARD LABEL(6) is greater than INCUMBENT

Iterative Backward-Forward Reaching

Figure 3.9
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(backward) pass of the algorithm eliminated any

variables. - Consequently, when FORWARD STOP = BACKWARD

STOP 1, the algorithm is finished.

Algorithm 3.3

STEP 0 Let BACKWARD LABEL(NODE) = 0 <Ior all NODES

BACKWARD STOP = 0

STEP 1 Let FORWARD LABEL(NODE) = INFINITY for each

except NODE = 1, FOKWARD LAEEL (1)
Let NODE = 1.

FORWARD STOP = 1.

STEP 2 Choose an ARC which begins at NODE

If none exists go to STEP 4
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STEP 3 If FORWARD LABEL (NODE) + COST(ARC) +
BACKWARD LABEL(ENDARC) 2 INCUMBENT, :

eliminate ARC, PARTNER(ARC), set

FPORWARD STOP = 0, GO TO STEP 2.

If FORWARD LABEL (NODE) + COST(ARC) <
FORWARD LABEL(ENDARC), FORWARD
LABEL (ENDARC) = FORWARD LABEL (NODE)
+ COST (ARC)

3 GO TO STEP 2. §

STEP U Let NODE = NODE + 1 { 1

If NODE = M + 1 (the last node), GO TO STEP 6.

STEP 5 If FORWARD LABEL (NODE) + BACKHARD LABEL (KODE)
< INCUMBENT, GO TO STEP 2
Eliminate all arcs and their partners which begin

at NODE. If any arcs are elimirpated at this step,

set FORWARD STOP = O

GO TO STEP 4

STEP 6 If FORWARD LABEL(M + 1) > INCUMBENT, STOP

If shortest path solution satisfies Y = %, SIOP

If FORWARD STOP = BACKWARD STOP = 1, STOP.
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STEP 7

STEP

8

STEP 9

STEP

0 5 2

10

Let BACKWARD LABEL(NODE) = INFINITY for each
node except NODE = M + 1,
BACKWARD LABEL(M + 1) = 0.

Let NODE = M + 1

BACKWARD STOP = 1

Choose an arc which eads at NODE. i

If none exists go to Step 10.

If BACKWARD LABEL (NODE) + COST (ARC) +
FORWARD LABEL (BEGIN ARC) 2
INCUMBENT, Eliminate ARC, PARTNER (ARC),
set BACKWARD STOP = 0, GO TO STEP 8.
If BACKWARD LABEL (NODE) + COST (ARC) < f
BACKWARD LABEL (BEGIN ARC),
BACKWARD LABEL (BEGIN ARC)
= BACKWARD LABEL (NODE) + COST (ARC)

GO TO STEP 8.

Let NODE = NODE - 1

IF NODE = 1, GO TO STEP 12
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STEP 11 If BACKWARD LABEL(NODE) + FORWARD LABEL (NODE)
< INCUMBENT, GO TO STEP 8
Eliminate all arcs and their partners which
end at NODE. If any arcs are eliminated at this
step set BACKWARD STOP = 9.

GO TO STEP 10

STEP 12 If BACKWARD LAEBEL(1) 2 INCUMBENT, STOP
If shortest path solution satisiies Y = Z, SIOP.
If FORWARD STOP = BACKWARD STOP = 1, STCP.

GO TO STEP 1.

In applying the methods of this chapter it was
found that the shortest path relaxation is too weak.
This HELSINKI algortihm did not compare favorably, in
solving large problems, with existing more general
algorithms such as Marsten's Set Partitioning Algoritam
(SETPAR). The HELSINKI algorithm was effective in
reducing the size of the problem (by roughly 60% at the
second level of the tree, 80% at the third level and 90%
at the fourth level . However, the relaxation was so
weak that most nodes in the tree were fathomed by
infeasibility (due to eliiminating variables) rather than

by bounding. Conseguently, the algorithm generated a
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huge tree. 1In spite of the speed with which the
shortest path subproblems could be solved; the entire
Helsinki problem could not be solved in a reasonable

amount of time.

In order to overcome this difficulty, we took steps
to tighten the relaxation. These will be discussed in

the next chapter.
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CHAPTER 4

TIGHTENING THE RELAXATION

In this chapter ve construct a Lagrangean
relaxation of the Helsinki problem by dualizing with
respect to the coupling constraints. This results in a
relaxation that is a shortest path problem with arc
lengths that depend on the current values of the
Lagrange multipliers. Using subgradient optimization to
maximize the Lagrangean leads to an interpretation of
seeking an optimal allocation of the costs of the
original variaoles between their decoupled arcs. 1In the
final section we show that, by using this technigue to
tighten our relaxation we can reduce the size of the
search tree generated by the branch and bound algorithm

of the previous chapter.

4.1 Subgradient Optimization and the Helsinki Problem

Consider the Helsinki problenm:
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(HP) Min c¥ v + c? 2
st (Y,2) in S
IY¥ - IZ = 0

Y,z = 0,1

where S is the set of shortest path solutions.

By multiplying IY - IZ by the dual variables U and
adding the result to the objective function, we can form
the Lagrangean relaxatior of (HP) [Everett (1963),

Geoifrion (1974) ]:

(HER ) W(U) = Min Cc¥ Y + c%2 2 + U(Y - 2)
St (Y. 8) 485

Y,Z = 0'1

Note that (HPR;,;) has the property that it is not altered
by dropping the integrality conditions on Y and 2 (indeed
(Y,2) in S guarantees Y,Z = 0,1). This feature is known
as the INTEGRALITY PROPERTY [Geoffrion (1974) ]. Then

(HPR;) can be rewritten as
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(HER ) W(U) = Min (Y + U)Y + (cZ - U)2z

st (Y,Z) in s

Note that W (U) is a piecewise linear concave function
since it is the pointwise minimum of a family of linear
functions of U. Since U(U) has the integrality property
Max W(U) is equivalent to the linear programming
r:laxation of the Helsinki problem [Geoffrionm (1974) ].
Geoffrion has shown that Lagranyean relaxation can be

very effective when used in branch and bound algorithams.

Held, Wolfe and Crowder (1974) have shown that
using a technicue now known as subgradient optimization
is effective in maximizing the Lagrangean. Comnsider our

A A A

function W(U). Suppose (Y,Z) is optimal for U:

A A

Y v o)y + (¢ -0z

u(ﬁ) = (C
We define s to be a SUBGRADIENT of W at U if and only if
W) < w(l) ¢« (v -0)s

for all U. Then the vector s at U points into the half

space (orthogonal to s) which contains all better




(larger) solutions to W. Consider a U' such that W(U')

> W(U), then

W(Ur) > H(D) > W(UY) - (U - U)s
=> (Ut - G)s >0

vhich means (U' - ) forms an acute angle with s. This
implies that U' is in the half space into which s points

at 0.

Consequently, a subygyradient can be considered a
good direction to go in search of a higher value of W.
Consequeatly, ve will maximize W iteratively. At each
iteration we choose a new Uttl by moving from our last
Ut in the direction st. That is

ot = ot + atst

vhere a® is the step length.

A A

Now, we show that (Y - 2) is a subgradient of W at

0. Recall
W(U) =c'Y + 2 « U(Y - 2)
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w(U)

Min cYY + Zz + U(Y - 2)

st (Y,2) in S

~

+clzeuqy- 12

>

= wW(@) < c¥

=> u) £ cY¥T+clze+ur-3z -

0(Y - 2) + U(¥ - 2

=> W £ w@) ¢+ (u-0-2

A A

which is just the definition of (Y - 2Z) as a subgradient
of W at 0. Notice that our proof of this did not depend
on the constraints (Y - Z) put into the objective
function. A general result holds that whenever a
Lagrangean relaxation is formed, if constraints AX < b
are put into the objective function then the vector

(AX - b) is a subgradient for the Lagrangean.

Take (HPRU) as the relaxation of the Helsinki
problem (HP). In particular (HPR;) is the Shortest Path
Relaxation obtained in chapter 2 Lty decoupling the arcs.

However, since Y - 2 is a subgradient of W at U, the

SR e B R
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relaxation may be tightened by utilizing subgradient

optimization techniques [Agmon (1954), Motzkin &
Schoenberg (1954), Poljak (1967), Goffin (1971, 1976),
Held & Karp (1971), Held, Wolfe & Crowder (1974),
Pisher, Northup & Shapiro (1975) }. 1In this way the
Lagrangean relaxation value should approach the value of

the linear programming relaxation.

We use the following version of subgradient
optimization. Let ; be the TARGET VALUE, a guess at the
optimal value of ugx W(U). Define Ut+1 = pt o« atst
wvhere st is the subgradient at iteration t and at is the

step length. Since W(U™!) < w(u®) + (! - uH st we

may consider W (U * ) + (Ut+1 -ut )st to be an uppér
bound or approximation for H(Ut+l). Then, since we want
to reach our target value ﬁ, pick Ut+l so that our
approximation will egqual ﬁ. Choose Ut+l = U + atst

3 p t t
(i.e. choose at, since U and s are already

Lo u%s® = uqdh)

tl2

determined) to satisfy Vo= W(ut) + (Ut+

+ at |st|2 - Then ab = [€ - H(Ut)]/ |s

Computationally, solving for aF and Ut+1 at each

t = Qt - %t, (where

t|2

iteration is very simple. Since s

(?t,at) is optimal in H(Ut)), |s is just egual to
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.

the number of arcs in the shortest path solution whose

partners are not included in the solution.

In practice, in order to assure convergence,
ve will include a multiplier 4t , 0 < dat £ 2, in

computing at [Held, Wolfe & Crowder (1974) ]

at = gt [ﬁ - W@ty ist|2

4.2 Interpreting the Subgradient Optimization Iteration

for the Helsinki Problem

Conceptually then, each iteration of the subgradient

optimization merely reallocates the cost C

j of xj
between Yj and Zj o
Y z
W(U) = Min E[(cj 0T, ¢ (6 - U)2,])
0,2 in's
u§” = U atew - w(ut) ]si/ Ist|?
- u§ s &fF ~ u(ut)](rjt e T
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B ival e+l
so (c]) = gy * 0 1 . :
=c) + u; e af(w - WS Yy - z§ vz u¥)?
. (c§ it o+ 2R - u(u‘)]&; = i; VAL &
and (cjz et = (c;‘ )& =t - u(ut)_‘mrjt e zjt y/ |s9?
If ve let P* be the penalty at iteration t + 1
pt = affw - Wty | st
ghen el = @l gt watEti= 2ty
J J 3
=(c’j{)t ¢ pt if §5 =1 ana 'ij‘ =0
Y t+1 Y At ~
(cy) = (c; ) if ¥ = z'J‘
r Y t s t % At s At o
= (Cj ) P if Yj 0 and zj 1
And = (cg‘ yio =S if §§ =1 and 2; =0
Z t+l = Z & T - S -
€5 = (€5 ) if gen: zj
- Z t t ] vt = At =
= (Cj ) + P if Yj 0 and Zj 1

5 if the partners Yj and ?j are
both included in the slortest path relaxatiom solutioa or

For a variable X

are both not included there is no adjustment in the

allocation of Cj to c} and C? . However,if one partner
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(say Y, ) is included and the other (zj ) not, then the

includ:d partner is given a higher cost [(c})t + pt ] to
make it less attractive and the excluded partner is given
a lower cost [(C?)t - PY ] to make it more attractive.
The algorithm tries to make partners equally desirable

so that if one is chosen the other is also chosen.

4.3 Choosing the Target Value

In ipplementing subgradient optimization there are
+
a number of degrees of freedon. Generally Utl is

determined by

oo gt e At -REt)sY (s’

It has been shown [Held, Wolfe & Crowder (1974) ] that the
algorithm will converge to Max W(U) if 0 < e 88

a® -> 0 and the sum of the ats diverges. In practice
ve have begun with &= 2 and then periodically

reduced it by half. This strategy follows that of Held,

Wolfe and Crowder (1974).
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A further choice in the algorithm is the selection
of the target value. Solving the relaxation serves two

purposes:

1. A relaxation value greater than the incumbent

allows us to fathom that node of the search

tree

2, A relaxation solution whkich is feasible in the
original problem (HP) also allows us to
fathom that ngde of the tree. This ié because,
in our Lagrangean relaxation W(U), we dualized

with respect to the constraints Y = Z. Since

these constraints are equations, finding a
feasible answver guarantees complementary

slackness.

Rather than take the incumbent as the target value
we have generally taken a value somewhat higher. On tae

assumption that Max W(U) is greater than the incumbent,
U

it is reasonable thkat W, which would be Max W (U)
U
ideally, be greater than the incumktent. We have tried

using the incumbent as well as higher values. We have

found the latter to be significantly more effective in
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reaching the incumbent. In practice we have used 120%

of the incumbent as the target value.

4.4 Tree Structure - Bounding a Set of Nodes

The Lagrangean relaxation approach developed here
has been embedded in a tree search. Specifically ve
have used it as the relaxation procedure in Algorithnm
3.3. Computational experience with this algorithm shows

that for each level we descend in the tree we eliminate

a large proportion of the variables. Consequently in
the lower levels of the tree we are dealing with a small
subset of the original variables. ZThe result is that
the subgradient optimization procedure tends to derive
costs (CY,CZ) for the uncoupled arcs that are not

reasonable in other parts of the tree.

In order to combat this problem we have

experimented with a number of implementation options.

Etcheberry (1976) has reported that one successful
strategy is to save the values of the dual variables vt

at each level of the tree and use them the next time

that level is visited. We have tried saving the dual
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variables and utilizing them in a number of ways. At
each level we tried using the last set of dual variables
obtained at that level. We have also tfied using the
last set of dual variables used at the next higher
level. 1In addition we have tried a number of more
exotic (and less effective) ways of using the stored

dual variables.

However, we finally settled on a procedure whick
does not require saving dual variables at all. At level
0 we begin with dual variables u° = 0 and apportion the
cost Cj of each variable in the original problem Lketween
C§ and C? . proportional to the number of rows covered by
the segment of ones in Yj and 7.j respectively. For
example if Cj = 100, Yj covers 3 rows and Zj covers 7 rows,
then we set C§ = 30 and C? = 70. From then on we simply
use the most recently generated set of dual variables to
determine (Cg,cg)t. The effect of this is to use the
jual variable values obtained at the next higher level,
as ve are moving down in the tree. When a node is
fathomed, before choosing a new separation variable at
that level, we try to fathom all of the rest of the
candidate separation variables at that level in one fell

swoop by solving thLe relaxation with the o0ld separation

1M1
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variable eliminated. This is equivalent to doing a
branch with the old separation variable set equal to
zero, hence we refer to it as binary branching. This

binary branching serves a number of purposes.

First, it is very often successful in eliminatiag
all of the rest of the possible branches at that level.
This allows us to inmediately move back up in the tree
one mﬁre level. If there are, say, eight more candidate
branches at the current level, for the work of one

branch we can eliainate all eight.

Second, this procedure of binary branching allows

us to choose the next separation variable in a rational

way. Even if the binary branch is not successful in
eliminating all of the remaining eligible branching

variables, it may succeed in eliminating some of them

when there is an incumbent soluticn to the problen.

Further, the hest solution obtained during the

subgradient optimization is used to choose the next
separation variable. This best solution is a path

composed from the decoupled arcs. Consequently, we
simply use as a separation variable the first arc in

this path which has not already beer chosen as a .
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separation variable in reaching this node of the brauch

and bound tree.

Third, binary branching allows a mechanism to brirg
the dual variables in line with the optimal ones at the
current level. In practice, when we are below level two
in the search tree, vwe do not do a subgradiernt opti-
mization as we are going down in the tree. We have
found that the improvement in the dual variables gained
is not enough to offset the extra computation involved.
However, we do continue to use subgradient optimization
below level two as we are moving up (or sideways) in the
tree, i.e. whkenever we perform a tinary branch. Con-
sequently, once past level two it is very easy to go
very far down in the tree since we use only the
relatively weak shortest path relaxations, without
subgradient optimization. Binary branching gives us a
method for getting back up in the tree without
examining a prohibitive number of nodes. Rather than
examine each remaining candidate tranch individually at
a level, we are often able to fathom them all at once by
doing a branch with the old separation variable set
equal to zero. In addition, as we work our way back up

in the tree it is a method for getting the best possible
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dual variable values at each level (since we always use
subgradient optimization at a binary branch) and does
not require storing dual variables at every level.

One problem we encountered with this technique is
that vwe were dealing with a large number of subproblems
of very small dimension. Over and over again we would
reduce the problem to one with just a few variables but
we could not fathom the node with either pure shortest
path or subgradient optimization of the Lagrangean
relaxation. Chapter 5 will deal with a new '"relaxation"
which we developed in order to handle this

characteristic of the problem.
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CHAPTER 5

A ROLE FOR PRIME NUMBERS IN INTEGER PROGRAMMING

In this chapter we show that any integer program-
ming problem may be easily reformulated as a knapsack
problem usirg the unigue properties of prime numbers.

We show that the same techniques may ke used to linearly
order the nodes of a search tree in solving an integer
program. Such a linear ordering can be used to reduce
the number of subproblems that need to be evaluated. 1In
Section 5.5 we develop a new algorithm for the set
partitioning problem, based on the knapsack representa-
tion. In the next section this algorithm is incor-
porated into the HELSINKI algorithm to fathom small
subproblems. We present an algorithm for the set

covering problem in the last section.
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5.1 Reformulating an Integer Programming Problem as

Ut 5

a Single Constraint Integer Programming Problenm

Consider an integer linear proyramaming problem (IP)

N 1
(IP) Bz & C.X
jnl j j i
N ﬁ
St Eaijxj = bi i &= 1,.--," ’g
xj .>= 0’ Inteyer j = 1,.--,"

where aij and b1 are integers.
It is known that (IP) may be reformulated as a
singly constrained problem [Garfinkel & Nemhauser

(1972) 3.

The technique involves considering the constraints %'
tvo at a time. A pair of multipliers is found and the
veighted constraints are combined to replace the
original pair with a single constraint. This trans-
formation yields an integer program with only one

constraint (IP!').




e el e R g e

N
(1P') Min Z Cy X
3=1

Xj 2 0,Integer J = 1,eee,N

5.2 A New Method for Reformulating an Integer

Programming Problem as a Knapsack Problem

It is easy to show that there exists a set of
multipliers, namely the logarithms of the prime numbers,
which may be used to combine an arbitrary number of
constraints. This set of nmultipliers can be used to

reformulate any integer programming problem as a

knapsack problem (where some of the objective function

coefficients may be negative).

Consider, again, the general integer linear
programming problem (IP). Let Py i=1,¢..,M be the
first M prime numbers. Then, if xj is an integer,

4= Vyeoe,l
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‘prime numbers.

N
D ax =b L= 1,00n,H
& s t
N »
:,-21 aijxj - b:l
<=> P, =1 i = 1,00,
M za X. - b
e
<=> I-Ipi =1
in1
‘{3 N
=> (2 a,.%. -5 JiB = 9
=1 j=1 3 1 &
ZN) M M
=> 6 o, cane;yry =B wwm
Fe e e e iy 1 i

where going from the second statement to the third

statement depends upon the unique properties of the

Consequently, any integer programming problem (IP)
vith integer coefficients in the constraints, can be i

revritten as a singly constrained integer programming

Problem (K).
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N
(K) Min [
j=1 33
N M M
st 2( 2 2y, 1nPi Y X . 2 hilnvi
j=1  i=1 3 i=1
X, >0, Integer J = 14eee,N

k]

We refer to (K) as the knifedge problem because of
three characteristics which distinguish it from the
knapsack problem. The first characteristic is that the
constraint coefficients are not the desired small
integers. Rathei, they are irrational numbers and any
transformation which does not sacrifice accuracy would
result in integer coefficients of infinite size. The
second characteristic is that the constraint is an
equation, making the usual linear relaxation (obtained

by taking the variables in order of their ratios

and setting the fractional variable to the largest
smaller integer) almost useless. Indeed the constraint
defines a fine "edge" with no width to it at all. The
third characteristic is that, quite likelf, sone

coefficients of the objective function or the constraiat
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may be negative. Unlike a normal knapsack problem, if

T

the objective and constraint coefficients of any
variable are of unlike signs, that variable cannot be
assigned immediately a value. This is due to the
equation constraint. It is possible, however, to modify
(IP) so that (K) will have all positive constraint

coefficients.

o A

To (IP) append the constraint

N+1

. |
#n ,

1}
o]

vhere B is a sufficiently large number and xN+lis a slack

variable with CN+1= 0. We have

N+1

(IP') uin 2 C; X
3=1

N+1

st Elaijxj =b1 ; i

1'.;..'5

N+1
Y x, =B
=y 9

= 1,...,"

xj 20, Integer

.
I




Let PM+1 be a sufficienly large prime nvmber such

that
Pml f Pi 1 = 1,-.0,“
and
M
E siE " s w5 5= Ve,
]

using (IP'), the resulting knifedge problem (K') will

have nonnegative constraint coefficients. 1In practice
it will usually be more productive to achieve the same
result in another manner. Suppose the constraint

coefficient of X is negative. Then, if qj is an upper

J
bound for xj (in practice an upper bound can usually be
assumed) , Xj may be replaced by Uj = xj. This, too,

will result in a knifedge formulation with nonnegative

constraint coefficients.
Consider now (K), the Knifedge interpretation of a

general integer programming problem. For ease of

notation we write (K) as
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N
(K) Min j}_.‘:lcjxj
N
g 2, ¥ b
=1
x:l > 0, Integer J = VgeensN

In general (K) can be guite difficult to solve.
Since linear programming (and other) reliaxations tend to
be very weak due to the egquality constraint, it appears
to be desirable to avoid relaxation procedures.
Alternatively, shortest path and dynamic n»nrogramning
offer solution techniques which avoid this problen.
Assume for the moment that the coefficients 5j' b of (K)
are integer. Then (K) may be interpreted as a shortest
path problem. Let G = (V,A) ke a directed graph with
vertex set V = {0,1,2,...,;} and arc set A = {(i,k):k-1
= aj for some j, j = 1,¢..,N} [Garfinkel & Nemhauser
(1972) ]« Then solving (K) corresponds to finding the
shortest path in G. Note that if Ej 20, J = Le0asly,
the graph G contains mo cycles, since ajy > 0 for all j
implies that if (i,k) is in A, then k > i. We will
alvays assume Sj > 0 in (K) without loss of generality.

Then (K) may be represented as an acyclic shortest path

problesm.
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5.3 Numerical Considerations - PFinite

Approximations to the Logs of Primes

In section 5.2 ve have assumed that the coef-
ficients 5j,5 of (K) are integer. In practice this is
reasonable since any computer implementation will
require the use of rational numbers. However, our proof
in Section 5.2 that (K) is equivalent to (IP) depended
on the use of the exact logs of primes. (K) with
irrational coefficients Ej, b may still be represented

as a shortest path problen.

Let 6 = (V,A) be a directed grapn with vertex set V

jfs 5ij and v< b where S £ {1,2,...,N}, xj

integer} and arc set A = ((i,k):k - i = Sj for some j =

1,2,...,N}. Then solving (K) corresponds to finding the

= {viv = 20,

shortest path in G. Note that each variable xj in (IP)

corresponds to an arc x; at each vertex v. Therefore,

choosing an arc x} to be in the path is equivalent to

incrementing by one the value of the variable Xj. Ne
M
define the SPAN of an arc X, to be a, = 3 a,, 1nP, .
3 J i=] 1 i

(The natural concept here is one of lenygth -
unfortunately early practitioners with shortest path

problems gave the word lenyth another conaotation,

123




i S

Loatdal

T S

namely cost). We define the span of a path to be the
sum of the spans of the arcs making up that path. The
span of a node is simply the span of any path reaching

that node.

In practice it is not possikle to use the exact
logs of primes. Are we then, justitied in solving (K)
in place of (IP)? Consider the followiny reformulation

of (IP).

Let P¥ = [10tlnPi] t integer

wvhere [a] = largest integer less than or equal to a.

M
* = * *
Let aj 1§1 aij P + PM+1
M
b* = E bi P; + BP§+1
Then N
(K*) Min FeE X
41 33
N
st 2 ax X = h%
=1 ] J
x.1 > 0, Integer 3= 14eee,8
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is a relaxation of (IP). Moreover it is a relaxation

vhich can be made arbitrarily close to (K) in the

natural sense by choosing t large. (Another way of
tightening the relaxation (K*) would be to use surrogate
duality [Glover (1968, 1975), Greenberg & Pierskalla

(1970) , Karwan & Rardin (1976) ].)

Proposition 5.1: If we assume X is bounded in (K),
then by approximating the irrational coefficients Zj,s
of (K) closely enough by rational numbers ag,b*; (K)
may be refornulat=2d as an equivalent knapsack problem

with rational coecfficients.

Proof: If we assume the variables X are bounded,

€S = {X: = Xyis+4,
X S {x: 0 £ XJ = UJ,

{X € S: aX # b}. For any X € S°,

xj Integer, j = 1,...,N}, then S

is finite. Let 3!
(3Xx - b) # 0, so there exists a § > 0 and a neighborhood
N, (3 such that the absolute value of (aX - b) is greater
than § > 0 for all a € Nx(i). Then there exists a |
neighborhood N, (B) such that aX # b for all a in Ny (a) |

and all b in N (B). Let N@) = N Ny(a) and
XES'
N(b) = N N (b). Then aX # b for all a € N(a) and
Xes'

~

b € N(b) and X € S'. Consider a set of rational

coefficients {(ak,bk) € RN+1: al;,bk rational, 3 = 1,2,¢¢.,N;
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k = 1,2,...) converging to (a,b). Then all but a

finite number of problems

k

(P) Min cx
N
st 2: akx, = bk

define problems equivalent to (K). Consequently by
choosing t large enough (but finite), (K*) will be

equivalent to (K).

The advantage of (K*) is that the size of the
shortest path problem (b* nodes) may be controlled by
the user. By properly choosing t and the base of the

logarithms, b* can be chosen arbitrarily.

By choosing t large we may approximate (IP) or (K)
very closely. How does (K*) differ from (K)? To answer
this we must develop a bit of machinery. Consider now
the shortest path interpretation of (K), the knifedge
representation of (IP). Choosing an arc x; to be in the
path corresponds to using a certain amcunt of resources
in the original problem (IP) represented by the vector
Aj. We shall prove in Proposition 5.2, that a path of
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span P corresponds to a unique vector of resource

utilization in (IP).

Proposition 5.2: Consider an integer programming problem
(IP) and the corresponding knifedge problem (K) with its
shortest path interpretatioa. Consider two sets of arcs

s, = {xgkzk = 1,2,...,k;, } and s, = {X:::k = 1000,k,)

If the two sets of arcs have equal span,

> 5 3
i.e. a.. 1lnp, = a., 1lnP,
k=1 i=1 Jx 1 k=1 ggi e

then they must cover precisely the same rows the same

number of times each, i.e. they must corresgond to
precisely the same resource vector.
Proof:
e £ >
a 1npP = a.. 1lnP
k=1 f=1 3y ket fwy % 4
k) m k2 M
> I IT emss - I1 »2in
k=1 i=1. k=1 i=1 *
k k
1 2
M z a M 2 a
ij ~ ih
o | ARSI B T et
i=1 i=1
7
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k) ky
2 a3 2 24h
: => p:=1 . = pﬁ" g Rieienl
|
k) k
L => a = a i = 1,0..,” 5
v i R
(since %j Integer) i
QED

The proof of Proposition 5.2 depends upon the use f 3
of exact logs of primes. Consequently, (K¥) is only an
approximation of (K) since it is possible for a path orf

span P to represent more than one vector of resource

utilization. It is the case that two paths 5, and 52 in
the shortest path representation of (K*) having the same

resource utilization

M M
i.e. VZ 2 Ny v!: Eaij
}(jsSl i=1 Xje:S2 i=1
vill have the same span
M M
i.e. ‘z a, K- 2 2 aij P*‘il
Xyes, i=1 ] Xyes, i=1

S




Where (K*) fails is that it may find an optimal
solution S that is not feasible in (IP). That is, the
utilization vector of the path corresponding to S may
not be equal to b, the right hand side vector in the
constraints of the original integer programming problem.
This is because, due to approximating the logs of
primes, two paths of equal span may not correspond to
the same utilization of resources vector. We regard
(K*) as having a resolution problem. - With t very small
(say 3) the nodes of the shortest path representation
tend to become blurred together and the algorithm may
perceive two actually distiact nodes as being one and
the same node. 1Increasing t increases the algorithm's

power of resolution.

Tais suggests a method for solving the relaxation
(K*) in a manner that ensures it will be an egquivalent
problem to (IP). Suppose (K¥) is keing solved as a
shortest path problem by a forward reacaing algorithm
(e.g. Algorithm 3.2). At a node (with span) j we check
each arc originating at j. Let the first arc be i.
Then arc i plus the path to j form a path to (j + span
of arc i), (say k). If node k has a label less than

infinity, vwe now require that the algorithm check that
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the incumbent path to k and the new path (to j then k
via i) have the same resource utilization vector. If
they do, ve proceed as usual. If they do not, then ve
arbitrarily give the new path (to j then k via i)

span k + 1 and begin again with arc i. Provided
t is reasonably large, this method should resolve all
but the most pathological cases. In practice we have
used t = 11 or 13 and have not used the above refinement
to our algorithm as its computational burden is very

high.

It is also possible to interpret (K*) from a
geometric point of view. 1In the knifedge problem (K)

the constraint N

25 X, =5

jglj j
represents a hyperplane H in RN. 1In all of KV the only
integer points in H are those that are feasible in (IP).
And H includes all (IP) feasible integer points. The
constraint N
Ea*x = b*
=1 3
in (K*) may be seen as a hyperplane H* approximating H.
H* is an approximation in that it still contains all

(IP) feasible integer points but may contain additional

integer poiants as well. Consequently, it is a tilted
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version of H, wherc¢ H* has becn rotated slightly about
the axis which is the aftine subset of R defined by the
constraints of (IP). Since H is a iinite distance fronm
all (1P) infeasible integer points it pay be rotatecd a
finite amount about this axis without including any
non-fcasible integer poiuti. This corresponds cxactly
to choosing t large enough that H* rotates littlc enough

to include no nou-feasible iuteger poiuts.

5.4 Inducced Linear Ordering:s in Cembina*torial

Problens

The transformation whichh took us firom (1IP) to (K)

may be looked at as one that inducc:s a linear ordering
on the set of partial solution: {Xx:X - {il'i2""'ik}'
k < N}). More preciscly, it may be scen as iuducing a
linear onc¢-to-onc¢ mapping from the vectors A, iu 2" in

J

resourcoe space to the real nunmbers.

p: 2" > R
M

P(2) = 2 zilnP‘ !
1=1 |
M ;

Py = 2alne,

1131




T,

Consider a partial solution X to (IP), X = {X; ,X,,
...,!k}, vhere for ease of notation the variables xj
have been reordered so that the variaktles with assigned
values (i.e. in the partial solution) are j =
1,2,..<,k. Then X uses a certain amount of resources,

namely

Ea X , = Voseeyh

Consegquently, we can extend the mapping P to map

(partial) solutions of (IP) into the real numbers.

P(X) = p(z A

"
M~
Le)

—
>
e
>l
e

"
\|
o~
M=
n
&
-
=]
o
Lo
¢!
.
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This extended mapping, P, is not necessarily

one-to-one since two different partial solutions may
have the same resource utilization vector. It is this

fact which may be exploited.

Consider a decision tree as normally developed in

branch and bound procedures for integer programminge.

See Figure 5.1. For example branching may be binary (ﬁ

= 0 and X
h|
is characteristic of branch and bound procedures that
each node k corresponds to a partial solution to (IP).
Consequently, our extended mapping can be considered as
mapping each node to the real numbers {(P(k)}) - 1In other
vords ve are able to induce a linear ordering on the

nodes of the search tree. See Figure 5.2.

It is very often the case in tranch and bound that
identical subtrees are generated over and over again.
This occurs when two nodes (or partial solutions),
neither one descended from the other, have the same

resource utilization vectors

i-oe. Z aijfj i - 1,0-.,“
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and the same set of unassigned variables.

This duplication of effort is highly inefficieat.
Howvever, attempts to avoid it [Marstem & Morin (1978) ]
have required saving an M dimensional resource
utilization vector for each node generated using a new
combination of resources. The mapping P makes it
possible to achieve the same end by storing a single
nunber for each node generated. Counseguently, the best
properties of branch and bound techrnigues and of
shortest path methods may be combined into a single

procedure.

Consider a shortest path problem derived from the
knifedge interpretation of a 0-1 ianteger programming
problem. The advantage of using a shortest path
algorithm (for example Algorithm 3.2) is that it tends
to minimize duplicated efforts. The reason for this is
that only a single path is generated from the origin to
each node. Consider the case in Pigure 5.3. (Note that
each variable xj in the origimnal problem corresponds to
an arc x} at each node v.) There are two distinct paths
to the fourth node, (xg) and (x; xi). In the shortest

path algorithm the path from node 4 to the end is

A s
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considered only once. But in a binary search tree where ’
Xj is the separation variable at level j (see Figure

5.4), the path from node 4 (of the shortest path

representation) to the end would have to be considered

tvice (from nodes 8 and 13 in Figure 5.4).

If we were to use the mapping 5, the decision tree
of Figure 5.4 could be redrawn as in Figure 5.5, where
the height of a node in the decision tree indicates its
position in the linear ordering induced by P. Nodes
having the same Lheight can be recognized as having the
same resource utilization vector. Nodes at the sanme
height and the same level are equivalent (i.e. they
have the same resource utilization and same set of
assigned variabies). The subsequent development for

them need only be done once.

The advantage of the branch and bound procedure is
that we are likely to find a feasible solution early on
in the search. We can then use this incumbent solution
to bound other nodes. Most shortest path algorithms, on
the other hand, do not generate a feasible solution
until the procedure is very near to its conclusion.

Methods have been devised to eliminate this shortcoming

i s
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SO ]

The Decision Tree of Figure 5.4 where the Height of a Node
Indicates its Position in the Linear Ordering Induced by P

Figure 5.5
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of shortest path algorithms [ Shapiro & Wagner (1967),
Glover (1967), Shapiro (1968) ] For example, if
Glover's algorithm is interpreted in a shortest path
context (it is developed as a dynamic programming
recursion technique) it can be seen to be equivalent to
a shortest path algorithm that Lbounds any path which
becomes longer than the shortest path. With the mapping
P it is possible to develop an algorithm equivalent to
Glover's which will work on any integer programming

problen.

5.5 Applications to the Set Partitioning Problem

In Section 5.4 we have indicated how the use of
prime nuabers might expedite branch and bound procedures
for general integer programming fproblems. For the set
partitioning problem, because of its special properties,

wve can do much better.

The first property of set partitioning problems is
that the variables may be constrained to be 0 or 1. 1In
practice, though, it is not necessary to consider the

upper bounds since the constraints themselves do not
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allow any variable to exceed one. It is true for all
0-1 integer programming problems that partial solutionms

correspond to subsets of {1,2,...,N} where X correspoads

to s = [j:fj= 1. Then if the set partitioning problenm
is (SP)
N
(SP) Min 2 € X
J:l J 3]
N
St z = 1 i == 1"00 ,H
xj 2 0, Integer J = 14eeeeN
vhere aij = 0,1, the knifedge representation (KSP) is
N
(KSP) ~ Min 2
§ M M
st a,, 1nP, )X = 1nP
=1 2___: 1) 1) 3 12_:1 1
X, > 0, Integer J = Yieee,N

3

As shown in Section 5.3 (KSP) may be interpreted as

a problem of finding a shortest path on a graph G = (V,A)
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vhere V = (v:v = 2 (

o aijlnPi)xj vhere

“M
L} =
p—

8§ C [,2,+::,8) and 5 =01

M
i.e. where V = ({v:v = Z ( Z aij 1nPi) where
. jes i=1

R

Consequently there are at most 2%  podes or vertices

on the Graph G.

Another characteristic is that all of the coef-
ficients of the constraints are either 0 or 1. The
right hand side is all ones. Consequently, the only

nodes which need be considered are
V¢ = (viv = z 1nP; where T S {1,n0..,M)}
ieT
This is because these are the values of v which

correspond via the one-to-one mapping P to feasible

resource utilizations in z“. Consequently, there are at

most nintz“,z") nodes or vertices on the graph G.




We can make further use of the logical implications
of the set partitioning problem. We begin by refori-
ulating the Principle of Optimality im terms of

shortest path problenms.

S

Let X = {x.!,x2,...,xk} be an ordered optimal path
3773 Ik
in the shortest path representation or (KSP), the

knifedge reformulation oif the set partitioning problenm
(SP). The jl,...,jk are all unique, so we suppress the

superscripts A with the understanding that each arc Xj
i

begins where the previous arc % ends. Then X =
i-1

(X, ¢---X, }. The set X* = {X :X 1 for all X, ¢ X,

3 2 - 5 3 :
' xJ = 0 otherwise} is am optimal soluticn to (KSP) and
(SP). A SUBPATH ib of X is the ordered subset of the '
first P elements of X, X = (X, , R T P
P 373, 3

Note the elements of ip must retain the order they have
in X. Xp corresponds to a partial solution x; of (SP)

4- vhere X¥ = {X :X = 1 for all xj € fp, xj undeternined

othervise}.

Principle of Optimality: An ordered optimal path X =
(xj ,...,xj } to a shortest path problem is said to

1 k
satisfy the Principle of Optimality if and only if any

ordered subpath X_ = (X, ,...,X, }, P £ k, has the
P 3 3o
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property that it is an optimal path for the nodes it

covers.

Notice that some ordering of {X. ,X. ,...,X. } is a
Iy 2 I
solution to the shortest path problem which can be

generated by usual techniques (e.g. Algorithm 3.2).
However, in general it is not the case that an arbitrary
permutation of {X. ,X. ,...,X. } will satisfy the ’

by g Ik
principal of optimality. Consider the problen

Min x1 *o Ry # 3%,
st X, + 2X, + 3X3 = 4 :
xj = 0'1 j = 112'3

The optimal solution is X, = X3 =1, X, = 0. The
corresponding optimal path to the shortest path
interpretation is (X,0X3) This permutation satisfies
the principle of optimality. However, the permutation $
(x3,x1) does not since (x3) is not an optimal subpath
((X,,X,) is a better subpath). Consequently, it is not bﬂ
the case that an arbitrary permutation can be generated

by the usual shortest path algorithms. However, it is

the case for set partitioning problems that any
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permutation of an optimal answer will satisfy the 2

principle of optimality.

Proposition 5.3: For the set partitioning problem (SP)
and the corresponding knifedge problem (KSP), any

permutation of an optimal answer will satisfy the

principle of optimality with respect to the shortest

path interpretation of (KSP).

. 'x. '..Q'x. }
43 4o Ik
of an optimal solution to (KSP). Consider a subpath

Proof: Consider a permutation X = ({X

>

= {X X; geeeeX. }, p £ k, with span P. Suppose

P 3,73, Jp
ip is not an optimal path with span P, but rather

<1

4 , % {Yl ,Y2 ,...,Yt } is. Then by Proposition 5.2
' and the fact that no row of the original set parti-

tioning problem can be covered more than once, we have,
Yt n (x \Xp) = f. But then Yt U (X \Xp) is a better
solution than X to the original problem, which

cannot be the case.

QED
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Proposition 5.3 is very povwerful. It allows us, in
advance, to order the optimal solution in any fashion we
choose. We choose to order the arcs of the solution
according to the row containing their first entry. Then
at any node of our shortest path algorithm we need
consider only those arcs which begin at the first
uncovered row. And of those arcs we need consider only
those that do not conflict with the shortest path to the
node being considered. This drastically reduces the

number of nodes generated.

Consider the rollowing algorithm to solve a set

partitioning problem (SP).

Algorithm 5.1:
STEP 1 From (SP) form the corresponding knifedge

problem (KSP). Interpret (KSP) as a shortest path

problem where the number of nodes is

M
bW 1nPi
i=1
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T

vhere P, is the ith prime number, and the span of each

¥
arc xj 1s

)E
a..lnP..
o e AR

STEP 2 Solve the shortest path problem generating
nodes as needed. A node is characterized by its span
from the origin, which is given by the sum of the spans
of the arcs in a path reaching it. At a given node
consider only the arcs which begin in the first row of
(SP) not yet covered, eliminate those which conilict

with the path to date.

We tried implementing Algorithm 5.1 and found that
it wvas very sensitive to problem size. Small set
partitioning problems were solved with great speed. A
test problem of 30 rows and 168 columns was solved in
less than two seconds of execution time on a CYBER 175,
generating only 2314 nodes. However, the same problem
with ten additional rows and 103 additional columns
generated more than 20,000 nodes (in 7 seconds) and was
abandoned (it was approximately one-half of the way

through the problen).
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5.6 Applications to the Helsinki Proklem

In conjunction with the HELSINKI algorithnm,
Algorithm 5.1 is very powerful. The iterative
backward-forward shkortest path Algorithm 3.3 plus
subgradient optimization allows us to eliminate
variables at each node wvhick cannot be eliminated by
logical considerations alcone. Our experience has teen
that 75% of the variables can be eliminated at the first
level of the decision tree (i.e. when only one variable
has been chosen to be in the solution). This makes
Algorithm 5.1 very attractive as a "relaxation" in the
two duty period scheduling protlem. Our practice has
been to use Algorithm 5.1 when the number of variables
remaining in the problem falls below some number
(between 60 and 120). Algorithm 5.1 is very useful in
cleaning up small problems which very often require a
significant number of branches otherwise. Algorithm 5.1
may also be a good relaxation to incorporate into
implicit enumeration algorithms for solving general set

partitioning problenms.

An additional advantage of the Kniredge relaxation

is that it makes it very easy to harndle certain side
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constraints. We incorporated the constraint
>
R ERT
, 02
This may be done by adding a slack to get

N

jglxj:,s = K

multiplying the constraint by lnPM+1 and adding it to
the Knifedge constraint for (IP). Then, however, the
arc S must be considered at every node arnd the path is
significiantly longer (by K1lnPy,. ,). There is a way in
wvhich this constraint can be implemented logically so
tkat the path is shorter rather than longer. At each
node Rlgorithm 5.1 checks to see if a feasible solution
has been found by finding the first row not covered.
Consequently, whenever a feasible solution is found the
path ends there and the solution is recorded if it is
the best so far. If the current node is not a feasible
solution, that is there is a row < N not yet covered,
then the number of arcs in the path to this node is
checked. If it is equal to K, the qode is fathomed:. 1In
this way many more nodes are fathomed along the way and

the arc S is never considered.
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Ve have used the Knifedge relaxation in the two
duty period scheduling problem and have found that it
significantly reduces the running time (5 - 30%). 1In
addition it gives the capability of more easily

considering side constraints.

5.7 Applications to the Set Covering Problem

An algorithknm similar to Algorithm 5.1 can be

developed for the set covering problem (SC}

(SC) Min CcX
st AX 2 1
X =20,1

vhere ag 0,1: € > 0.

J
Consider the shortest path interpretation oi the

knifedge formulation (KSC) of (SC). We show that any

permutation of an optimal solution to (SC) will satisfy

the principle of optimality.
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Proposition 5.4: For the set covering problem (SC)
and the corresponding knifedge problem (KSC), any
permutation of an optimal answer will satisfy the
Principle of Optimality with respect to the shortest

path interpretation of (KSC).

Proof: Consider a permutation X = (X, ,X. ,ece,X. )
31 32 Jk
of an optimal solution to (KSC). Consider a subpath

»<1
|
—~
ol
-
Ll

= 3 PR < k with an P. Su
b g2 32' ) Jp) ¢ P 2 . Sp ppose
is not an optimal path with span P, but rather

tall
o

<

= (¥, #Yy deseely ) 4By IRt X £ X i (i\)’(p).

t 1 t

Then X, covers rows of (SC) already covered by ip by
Proposition 5.2. Then (i\ii) is a solution to (SC) better
than X, which cannot be. Therefore, Y N (i\ip) = 2
vhich implies ft U (i\ip) is a solution to (SC) better

than X, which cannot be.
QED

The following algorithm will solve the set covering

problem.
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Algorithm 5.2:

STEP 1 From (SC) form the corresponding knifedge
problem (KSC). Interpret (KSC) as a shortest path

problem where the nunmber of nodes is

M
> 1lnP
i=1 *

wvhere P. is the ith prime number, and the span of each
1
arc x; is

M

e ing .
25 Wil

STEP 2 Solve the shortest path problem generating
nodes as needed. A node is characterized by its span,
vhich is given by the sum of the spans of the arcs in
a path reaching it. At a given node consider only the

arcs which cover the first row of (SC) not yet covered.

We show that Propositions 5.3 and 5.4 are special

cases of a more general result.
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Proposition 5.5: For the integer programming problem
(IP) with no upper bounds on the variables and the
corresponding knifedge problem (KIP), any permutation of
an optimal answer will satisfy the principle of
optimality with respect to the shortest path

interpretation of (KIP).

! -
Proof: Consider a pernutation X = (xgl,...,x;k)
1 k
of an optimal solution to (KIP). Consider a subpath

£ = (x¥1,...,%X'P), p < k, with span P. Suppose X
P 3 Ip : P

is not an optimal path with span P, but rather

= = ul ut . < e o N

Yt (th,...,Yht) is. Then Yt U (X\Xp) is a

solution to (KIP) better than X, which cannot be.
QED

Note that the proof depemnds upon the variables
having no upper bounds, otherwise ft U (i\ip) may
violate an upper bound on some Xj. The result does not
hold generally for problems where the variables are
restricted to be 0,1. BHBowever, as ve have already seen,
in the set partitioning problem the variables need not
be constrained to be 0,1. Similarly, for the set

covering problem with C > 0, the variables need not be
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bounded above. Consequently, Propositions 5.3 and 5.4

follow immediately from Propositionns.s.

Similarly, for any 0,1 integer programming problem

§ vhere the constraints force the 0,1 condition,

Proposition 5.5 holds. An example would be a problem
vhere each 0,1 variable is included in a multiple choice

constraint of the form

jes

where S C {1,...,N}.
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CHAPTER 6

THE GENERAL TWO DUTY PERIOD SCHEDULING PPROBLEM

The general two duty period scheduling problen (P)

is given by
(P) Min CX
st AX = b

X Integer, Nonnegative

vhere each column of A contains at most two segments of

ones, the rest of the entries being zero.

As developed in Chapter 2, (P) may be reformulated

as (P*)
(P*) min ¢’y + c?z
st  (Y,2) in s

I¥ - 12 = 0 vl

Y,Z Integer, Nonnegative

| y Ry
%,‘ e




vhere S is the set of solutions to a network flow

problen.

Much of the methodology developed ir chapters three
and four may be simply modified to fit the more general
two duty period scheduling problem. The relaxation now
is a network flow problem rather than the shortest path

problenm.

For the same reasons that the shortest path was
acyclic, the network flow problem will also ke acyclic.
Consequently, we still have a reasonably easy relaxation
to solve. However, in the case of greater than or equal
to constraints the network flow problem will no longer

be acyclic.

The major drawback with the general two duty period
schedulingy problem is that we are not able to make such

extensive use of logical reduction. Much of the power

of the HELSINKI algorithm came from the fact that once
an arc was chosen to be in the shortest path, we were
able to eliminate all arcs which conflicted with it. 1In
the case of the network problem this is not true.

However, some logical reduction may still be useful.
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Consider the case where aij 2.0 for all elements aij of

A

have chosen enough arc flovws (xj, j in J) in the network

(i.e. there are no surplus variables). Suppose we 33

flov problem such that the ith constraint is satisfied, >

i.e.

N

:]z=:1 aijxj = b1
Then we can eliminate (set equal to zero) all other xj's
(j not in J) such that aij > 0. And of course we are ;

still able to eliminate the partner of any eliminated

arc.

We can also use subgradient optimization im a

completely analogous way. °‘We start by solving the

netvork relaxation. Then by the use of subgradient

optimization we reallocate the cost of a variable

between its two decoupled arcs in such a way as to make

them more nearly equally desirable. This is domne by

S

increasing the costs of those arcs which were included
in the netvork solution but whose partners were not
included. Simultaneously, we reduce the costs of the

unincluded partners by the same amount.

158




One thing that will have to be done differently
vith the general two duty period scheduling problem is
the branching procedure in the tree search. Rather than
using aé a separation variable the first arc in the
shortest path relaxation solution not already used as a
separation variable, we will have tc choose a branching

procedure adapted to the network relaxatior.
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CHAPTER 7

COMPUTATIONAL EXPERIENCE

In this chapter we present our computational
experience with the HELSINKI algorithm. In Section 7.1
we discuss the test problems used. We follow this witkh
results on the logical elimination of variables and
results of the subgradient optimization procedure. 1In
Sections 7.4 and 7.5 we present conmputation times for
the test problems with and without a side constraint.
Decision trees for the two smaller test problems are
given in Section 7.7. Section 7.8 fprovides some results
of the prime number - shortest path algorithm for small

test problenms.

7.1 The Test Problems

Our computational experience has dealt with the

Helsinki problem discussed in Chapter 3:
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where each column of A contains at most two segments of
ones, the rest of the entries being zero. (HP) is a two
duty period scheduling problem. It is also a set
partitioning problem and, consegquently, good methods
already exist for solving it. Our intention was to test
our method for solving the two duty period scheduling
problem by considaring first the Helsinki problem. 1If
we were able to obtain results comparable to the best
existing set partitioning algorithms, then RAlgorithm 2.1
should provide a reasonable method for solving the more

general two duty period schneduling problen
(P) Min cx
st AX = b
X Integer, Ncnrnegative

for which no good solution techniques exist.

The test problems used in evaluating our HELSINKI

algorithm were sent to us by Markku Tamminen of the
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Helsinki City Transport. The four test problems have
roughly the same size but varying densities. See Table

7.1,

Problem 1 was the original Helsinki test problea
and has been studied rather thoroughly by us and others.
Tamminen tested a number of set partitioning algorithnms
on problem 1 [Koljonen & Tamminen (1977) ]J. These
included the Garfinkel-Nemhauser algorithm and Marsten's
set partitioning algorithm, SETPAR. In addition
Tamminen tested numerous variations of the Gariinkel-
Nemhauser algorithm, with and without linear programming
and taking advantage of the special two segment
structure of the problem. His conclusion was that
SETPAR outperformed any other method they could devise.
Throughout this chapter our results with the HELSINKY
algorithm will be compared with SETPAR, it being the
best known existing algorithm for solving the Helsinki

problen.
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7.2 Effectiveness of Logical Reduction in the

HELSINKI Algorithm

One of the main features of the HELSINKI algorithm
is its reliance on logic to reduce the problem size.
This logical reduction entails two features. The first
is to eliminate any variables which conflict with
variables already chosen to be in the solution. The
second is to eliminate any variables which can not
participate in a solution improving upon the best known

solution (the incuambent).

Oour experience is that both of these features are
instrumental in significantly reducing the problem size.

Table 7.2 indicates the reductions we have experienced.

Table'7.2 does not accurately reflect thLe nunber of
variables which could be eliminated at each level. As
soon as a branch was bounded or found to be infeasible,
no more variables were eliminated. 1In those cases one
hundred per cent of the variaktles could have been

eliminated.




~a

e R A AR T e S T

Level

1 2 3 4
3.8 4.2 5.1 1.2
42.6 39.0 27.4 20.4
89.8 70.5 62.6 81.5
91.6 83.5 75.5 81.9
90.2 87.6 79.8 81.7
88.6 87.7 81.1 63.7

Percent of Variables Eliminated at each

Level of the Decision Tree

Table 7.2
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Average

3.6
32.4
76.1
83.1
84.8
80.3




At level one vwe have recorded the percentage of
variables for two cases. The first case, 1a, is the
first branch at level 1 (when there was no incumbent
solution) and the second case, 1b, is for subsequent
branches (when there was an incumbent solution). The
difference in these two percentages indicates the
additional power gained from the elimination of
variables which cannot take part in a solution better
than the incumbent. This elimination was achieved by
the forward-backward iterative solution process for the
shortest path problem as described in Chapter 3,

Algorithm 3.3.

Note that, for problems 1 and 4, fewer variables
are eliainated at level 4 than at level 3. This
apparent anomaly is due to the fact that level 4 was
visited only when there was no incumbent solution or

only a veak incumbent (see Figures 7.1 and 7.2).

7.3 Results of the Subgradient Optimization Procedure

We found the subgradient optimization procedure to

be very successful in tightening our relaxation. Recall
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that the Lagrangean relaxation of the Helsinki problenm
has the integrality property. Therefore, we know that
the subgradient optimization procedure can be expected
to converge to the linear programming relaxation
solution. In practice we vwere able to approximate the
linear programmiag solution as closely as we wished by
simply increasing the number of iterations in the
subgradient optimization procedure. The most difficult
aspect was determining the best number of iterationms.
We finally settled on a number of iterations (about 600
at level 0) which resulted in a relaxatior value within
5% of the linear programming value (see Table 7.1). UWe
found that advantages gained by tigktening the relaxa-
tion even further vwere more than offset by increased
computation times in performing the additional iterations

needed.

As outlined in Chapter 4, at each iteration of the
subgradient optimization we deternine a new set of costs
for the decoupled arcs and then resolve the shortest

t+l

path relaxation. The costs Cj at iteration t + 1 are

computed by the following formula
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vhere

P = 1 if arc j is included in the current
solution and its partmer is not
Pt o= -1 if arc j is not included in the
i current solution and its partaer is
1 ol R otherviée

p* wvas determined according to the formula

ol - d"[ﬁ-_w(u‘)]/ |st|?

There are tvo degrees of freedom in determining 2
The first is the choice of the multiplier dt, and tae
| second is the choice of the target value 6. We have
tried a number of procedures for choosing the target

value. Our final algorithm incorgorates many of then.

We have found that at the very top of the decision

tree, before any subgradient optimization has been done,

the shortest path relaxation is very weak. Character-

istically, it has been on the order of twenty-five per-
cent of the linear programming value and twenty-two per-
cent of the optimal value. If we were to use the optinmal z

ansver itself as the target, the perturktation tera *

170

R d




(dt[; - W) V¥ |st|2) in the equation above would be
very large. Our experience in this case is that the
subgradient optimization performs very poorly until the
mnultiplier atis adjusted to compensate for the large

[G > U(Ut)]. Consequently, at the top of the tree we
use for the target value two times the best relaxation
value found so far. Similarly, at lower levels of tke
tree, until an incumbent solution is obtained, ve use
1.2 times the best relaxation value found so far at that

branch.

A second alternative is fcr the user to set the
target value. In many real world implementations it
turns out that the user has a very accurate notion of
what the optimal value will be. 1Imn such situatioans it
seems best to take advantage of such knowledge. After
trying a number of alternatives, we have settled for
using such a guess, if provided, only after the first

level of the decision tree.

A third alternative is to take advantage of the
relaxation value obtained at level 0 to set targets at
lover levels. This value closely approximates the

linear programming value. There is wide experience
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concerning the gap between the linear programaming
solution and the integer solution. (Our experience with
these four test problems is that they have abnormally
large gaps - see Table 7.1.) It is possible to use the
relaxation value at level 0 of the tree in order to
approximate the value of the integer solution. This
approximation could then be used as the target value for
the subgradient optimization. Imn practice, the user has
the option of providing a Optimum/Relaxation ratio which
the HELSINKI algorithm will use to determine a target
value for the subgradient optimization procedure after
level 0. If the user guesses this ratio to be, say,
1.30, the HELSINKI algorithm will multiply the
relaxation value, obtained by the subgradient
optimization procedure at level 0, by 1.30. The
resulting value will be used as a target value for
subsequent subgradient optimizations and as an upper
bound on the problem. Once a solution better thanm this
target value is found it is subsequently used as the

target and upper bound.

As the value of the Lagrangean approaches the
targnt value the perturbation term a'[W - W(U) )/ | 2 1*

becomes very small. It is, therefore, very difficult




for the Lagrangean to exceed the target. Consequently,
rather than using the incumbent, the best known solution
to the problem, as a target value; ve have made a

practice of using 1.2 times the incumbent for the

target. We have found this to be very effective.

The second degree of freedonm in determining Pt is
the choice of the multiplier d*. The theoretical
restrictions on d % are that at each iteration d° be
between 0 and 2, that the sum of the atts nust diverge
and that a° must go to 0 in the limit [Held, Wolie &
Crowder (1974) ). Our practice has been to start with a*
large, do a number of iterations and then reduce the
size of 4. We continue in this manner until either the
perturbation term goes to zero or we have reached a
preset number of iterations. 1In practice, we do L
iterations with dt, then set L = L/2 and at = dt/2 and
proceed. Both the initial L and the initial at depend
on the current level of the tree (see Table 7.3). The
subgradient process terminates when d%is less than the
mininum 4% for that level. Below level 2 the parameters

are set as they are for level 2.
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Level Initial Minimum Initial Mini?um .

L L d° d
0 320 10 2.0 0.0078125
1 80 10 1.0 0.03125
2 40 10 0.25 0.03125

L is the number of iterations done with the current
value of the multiplier dt.

Parameter Values for the Subgradient Optimization

Table 7.3
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7.4 Computation Times rfor Four Test Problenms

Table 7.1 indicates run times for the four problems
under the following conditions. No side constraints
were considered. No guess was admitted. No Optimun/
Relaxation ratio was given. 1In other words Table 7.1
gives the results for the HELSINKI algorithm when the
straight Helsinki problem was considered with no outside
information. Included in the table are the results for
the set partitioning algorithm SETPAR under the same
conditions. CPU seconds are on a CYBER 175 computer

using FORTRAN 1IV.

Table 7.4 indicates run time for both algorithas
incorporating a Optimum/Relaxation ratio. It should be
noted that since the two algorithms use different
methods (subgradient optimization ard linear program-
ming) to get relaxation values at the top of the
decision tree the same ratio will lcad to different
upper bounds for the two, where upper bound equals ratio
times relaxation value. (Recall that the subgradient
procedure stops short of optimality.) Consequently, we
have chosen ratios for the HELSINKI algorithm to give

the same resulting upper bound that SETPAR calculated.
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7.5 Results when Side Constraints are Included

The HELSINKI algorithm may be modified to handle
side constraints. A common side constraint in crew

scheduling problems is that the number of variables in

the solution be less than or equal to some number K.

As mentioned in Chapter 5, the HELSINKI algorithm
can take advantage of this side ccnstraint in its prime
nunber - shortest path relaxation. However, the
HELSINKI algorithm utilizes an additioral technique to ¥
include this side constraint. At each node of the

branch and bound search tree, there are now two phases.

In ﬁhase one we consider a nevw problem formulated by
replacing the objective function of the original
‘Helsinki problem with our new constraint to form the new

objective function

We use the same techniques developed in Chapters 2

through 4 to solve this new proklem. We form the
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Lagrangean rela}ation and use subgradient optimization
to tighten that relaxation. Using the backward-forward
Algorithm 3.3 to evaluate the relaxation, we are able to
eliminate many arcs which cannot participate in a
solution containing at most K variables. If we fail to
fathom the node using the side constraint as the
objective iunction, we then proceed to phase two. The
second phase entails solving the regular subproblem
(vith the original objective function). The elimination
of variables and their partners in phase one strengthens

our relaxation in phase two.

Both SETPAR and HELSINKI are capable of Landling
the above restriction on the number of variables in the
optimal solution. Table 7.5 compares the two algorithas

for problems with this side constraint.

7.6 Decision Trees for the Four Test Problems

In order to give an impression of the actual
coaputation of the algorithm in solving the four test
problems, we include the decision trees generated in

problems 1 and 4. See Figures 7.1 and 7.2. Sonme
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special notation has been employed. Nodes with anm X
through them, ® , indicate nodes that were fathomed when
the logical reduction techniques demonstrated that the
problem was infeasible at that node. Nodes where a
feasible solution was found are underlined and the value
of the feasible solution is entered. The node where the
optimal solution was found is underlined twice. Aall
other bhanging nodes were fathomed by bounding. Those
nodes which were fathomed using the prime number -
shortest path algorithm are depicted by squares rather

than circles.

7.7 Results of the Prime Number - Shortest Path

Algorithnm

For the runs reported here the prime number -
shortest path subroutine was called whenever the number
of active variables became less than 60. We have also
made runs using a cut off of up to 125 variables. We
have found 75 to be most effective for easy problems
(nuabers 1 and 4) and 60 to be most effective for the

tvo hard problenms.
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It was our experience with a cutoff of 60 that the
nupber of nodes gererated by the prime number - shortest
path algorithm was very small (generally on the order of
100) . Problems 2 and 3, however, generated an inordin-
ate number of Knifedge proltlems requiring a thousand or

more nodes. See Figure 7.3.

In order to gain insight into the strength of using
the prime number algorithm we ran two of the test
problems without calling the prime number - shortest
path subroutine. The results are in Table 7.6. It has
been our experience that the prime number subroutine
leads to time savings ranging from 5% to 30%, the

average being about 10 to 15%.

Finally, wve give results for a prime number -
shortest path algorithm developed for solving generai
set partitioning problems. Problems were obtained by
eliminating rows from the four Helsirnki test problems.

See Table 7.7.
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Threshold

Problem 60 0
26.336 30.231
4 15.711 16.398

Threshold: When the number of variables in a subproblem
is less than or equal to the threshold, the
prime number - shortest path subroutine is
called.

Run times are CPU seconds on a CYBER 175 using FORTRAN IV.

Run Times for the HELSINKI Algorithm with Different Threshold
Values for Calling the Prime Number ~ Shortest Path Subroutine

Table 7.6
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Derivation Size Nodes Time

1 20 X 85 114 0.698
2 20 X 39 60 0.569
3 20 X 41 44 0.444
4 20 X 46 147 0.486
1 30 X 168 2314 1.651
2 30 X 79 767 0.901
3 30 X 89 1076 0.873
4 30 X 90 2096 1.256
1 40 X 271 >20,000 >7.056
2 40 X 147 10,745 6.551
3 40 X 139 15,100 9.699
4 40 X 169 >20,000 >7.562
Size: Rows X Columns

Derivation: Number of test problem which was truncated to
form this problem

Nodes: Number of nodes generated
Time: Solution time in CPU seconds on a CYBER 175

Results for the Prime Number - Shortest Path Set Partitioning
Algorithm

Table 7.7
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PART III Extensions and Discussion

CHAPTER 8

THE CIRCULAR ONES PROE™ M

In this chapter we consider the circular ones or
cyclical staffing problem. This is the problem of
scheduling workers in a planring horizon that has a
cyclical nature. ve consider the circular ones set
partitioning problem. We show that it may be solved by
solving K shortest path problems where K is less than
the number of rows or columns in the original problenm.
We interpret the circular ones problem as one of trying
to find the shortest path around a circle. In the final

section we consider networks on a circle.
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8.1 The Circular Ones Problenm

The circular ones problem is a special case of the
two duty period scheduling problem that has been studied
in some detail [Tucker (1971), Tibrewala, Philippe &
Browne (1972), Baker (1974), Brownell & Lowerre (1976),
Bartholdi, Orlin & Ratliff (1977), Bartholdi & Ratliff
(1977) ]J. The model represents continuous workshifts in
cyclical time. That is, each person works a single duty
period with no break. By cyclical time we mean that the
planningy horizon is of a definite duration having a
cyclical nature (a day, week, etc.); however, the time
chosen to demarcate the beginning and end of the
pPlanning horizon is arbitrary. Take for example, the
problem of determining the daily work schedule for a
continuous operation, see Figure 8.1. The duration is
determined, twenty-four hours. However, saying that a
day begins and ends at midnight is arbitrary. Generally
a single duty period corresponds to a single segment in
the column. However, since we are rnow dealing with
cyclical time, a duty period may extend from the night
of one day to the morning of the next. See, for

example, X, in Figure 8.1.
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An Example of the General Circular Ones - Cyclic Staffing Problem

Figure 8.1
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Cousequently, the circular ones problem is a
special case of the two duty period scheduling problenm.
Indeed, one could expect most of the columns to have
only one segment. In this case the network relaxation
would be strong and the subgradient optimization could

be expected to converge rapidly.

8.2 The Circular Ones Set Partitioning Problenm

Hhen the circular ones problem is a set partition-

ing problem (P)

(P) Min cX

st AX = 1

>4
1]
(=
-~
-

the HELSINKI algorithm would be expected to find an
optimal solution quickly. However, the circular ones
set partitioning problem can be solved more #asily. It
requires solving only K shortest path problems where K
is the greatest number of nonzero entries in a column or
the smallest number of nonzero entries in a row,

whichever is less.
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To show this, consider the solution to the circular
ones set partitioning problem. Recall that each colunmn
of A represents a CONTINUOUS SHIFT in cyclical tinme,
corresponding to one or two segments of ones in the
colunn. Choose a variable, xj, in the solution. Let I
be the first row of the continuous duty period of Aj
(i.e. choose I such that an = Yy aI-lJ = 0; or else

I = 1). Then reorder the rows in the problem according

to the transformation QI:

=T+ 1 i

v
L]

Q (i)

KE—-—1I +3i+1 i < I

Q; has the effect of rolling the constraint matrix
around, in the sense that row I becomes row 1 and the
rows retain their same sequential ordering, where row 1
follows the last row, row M. This is equivalent to
starting 24 hour days at some arbitrary time, say 4 anm,
and finishing them at the same time the following day.
Under this transformation the columns will still have
the circular ones property. Consider the problenm
created by eliminating all columns having more than one
segment after this transformation. This new fproblem is

simply a one duty period set partitioning problem which
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ve have shown in Chapter 2 to be equivalent to a
shortest path problem. Moreover, the optimal solution
to the original circular ones set partitioning problem

will be an optimal solution to this new problenm.

Let K be the maximal number of nonzero entries in a
column of the original circular cones set partitioning
problem. Then, if we consider any K consecutive rows,
any feasible solution to the circular ones problem must
contain a continuous duty period which begins in one of
those K rows. To show this, consider the first of the K
rows, I. Row I is covered by some variable xj of the
feasible solution. If the continuous duty period of xj
starts in row I, we are finished. If not, let k be the
last row of the continuous duty period of xj. Then
QI(k) < K. Otherwvise, xj contains more than K nonzero
entries. Then row k + 1 is covered by a continuous duty

period which begins in that row, where M+ 1 = 1.
Consider now the following algorithn.

Algorithm 8.1

STEP 0 Let I =0
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STEP 1 Let I =1 +1
Apply the transformation QIto the circular

ones problem. Eliminate all columns now
having more than one segment, since none
of these columns can participate in a
solution Lhaving a continuous duty period
starting in row I. Solve the transformed
problem as a shortest path problem. The
solution will be an optimal solution under
the restriction that the solution contain
a continuous duty period starting in row
I.

If T < K go to STEP 1.

STEP 2 O0f the K solutions generated, choose the best.

STOP

Algorithm 8.1 will solve the original circular ones
problem. We Lave shown this since the solution will
have a continuous duty period starting in one of the
first K rows, say row I. Then the Ith iteration of
Algorithm 8.1 will £ind that solution. Of course the
solutions found at each iteration of the algorithm will

be feasible solutions to the original circular ones
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problem, since the shortest path problem generated is a

restriction of the original problen.

Likewise we can show that (P) (for an example see
Figure 8.2) can be solved by solving K shortest path
problems, where K is the smallest number of nonzero
entries in a row. Repeat the first constraint as an M +
1st constraint to give an enlarged constraint matrix A'.
See FPigure 8.3. Apply transformation T of Chapter 2 to
the constraint matrix A'. Then TA' can be partitioned
into [a, |(TA')*] vhere a; is the firstlrov of A (recall
that T leaves the first row of A unchanged), and (TA') *
is a matrix representing a shortest path problenm
[ Bartholdi, Orlin & Ratliff (1977) ]J. See Figure 8.4.

In other words, (P) may be rewritten as a shortest path
problem with one complicating comnstraint of the form
N
Z a

R i

This complicating constraint simply requires that

only one of the variables X K for which a;,, = 1 can be

h h|
nonzero. The following algorithkm wil? solve (P).
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Algorithm 8.2

STEP 0 Find the row I with the least number of

nonzero entries.

Apply transformation QI to (P).

Let j = 0.

STEP 1 Let j j o+ 1

; If a;; = 0 GO TO STEP 1
" Solve the shortest path problem defined

S PHIIC PSS

by (TA')* with xj =1,

X, =0 if a,, =1, k #3

If § < N GO TO STEP 1

TR

STEP 2 Of the solutions generated, choose the best.

STOP

B e e s e

It is an interesting feature of Algoritkm 8.2 that

the shortest path problems solved will all be acyclic.

e TR ARG e SR

This is because, in the transformed constraint matrix,
i precisely those columns representing arcs going backwvard :
1

are the coluans which are set equal to zero or omne

before the shortest path problem is solved.
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8.3 shortest Path on a Circle

There is an interesting interpretation to Algorithm
8.1. Suppose thke original circular ones set
partitioning problem has M rows. Consider a network
with M nodes. Think of the M nodes as being arranged in
a circle (see Figure 8.5 corresponding to Figure 8.2).
Interpret each variable of the problem as an arc
beginning at the node corresponding to the row in waich
the continuous duty period of the variable begins, and
ending at the node after the one corresponding to the
row in which the continuous duty period of the variable
ends. See Figure 8.5. Enter the arcs on the network
diagram by always directing them clockwise around the
circle of nodes. The circular ones set partitioning
problem corresponds to finding the shortest path on a
circle. One need only consider any node, say I, and
solve the shortest path problem where node I is both the
origin and the destination ior the problem. Then
resolve the problem using node I + 1 as the origin/
destination. Continue in this wanner until the shortest
path problem has been solved for K consecutive origin/
destinations where K is the greatest number of nonzero

entries in a column. This guarantees finding the
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The Graph of the Circular Ones Problem of Figure 8.2




shortest path around the circle. This is because the
solution must contain an arc which begins at one of the
K nodes considered, since no arc is longer than K + 1

nodes.

Algorithm 8.2 may be interpreted in a similar
manner. If (P) is considered as a shortest path problen
on a circle, find the node I with the least number of
arcs, say K, starting at that node or passing over that
node. Then solve the shortest path problem starting and
ending at node I, K times. Each time set one (a dif-
ferent one) of the K arcs passing over or starting at

node I equal to one, and the other K - 1 equal to zero.

8.4 Networks on a Circle

These intepretations extend to thc general circular

ones problem (P)
(P) Min CX

st aX = b

X Integer, Nonnegative

199

S —




Nov the problem is ome of a network on a circle.
Consider the example in Pigure 8.1. Let I be the row of
the A matrix with minimum b;. Then apply transformation
Q; to A. See the example in Figure 8.6. Now repeat the
first constraint as an M + 1st constraint to the problen
and apply transformation T of Chapter 2 to the problenm
(see Figures 8.7 and 8.8). The problem has been
transformed to a network flow problem with one side

constraint aIx = bI' vhere a, is the Ith row of A.

(p*) Min cx
st ay X = bI
A*X = bx*

X Integer, Nonnegative

Interpreting (P') in our circular network model, we
see we have a normal network proklem with the additional

constraint that the amount of flow passing through OR

PAST node 1 must equal bI,

Formulation (P') suggests how easy it might be to
solve the circular ones problem using Algorithm 3.1.

There is only one complicating constraint in (P');

Therefore, we form the Langrangean relaxation
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Min Zijj
i=1

st Xl Xz X3 X4 XS X6 X7 RHS
4am~- 6am 0 1 1 0 0 O 0 = .
6am- 8am O 1l I 0 0. 0 0 = 1
8am-10am 0 1 0 O 1 O O = 2
10 am - 12 m Ol el 20 A0 &1 50 20 = o]
12 m = 2pn 0 20 0 00 L 0 1 a= oD
2pm~- 4pm 0 O O O 1 O0 1 = 1
4pm- 6pm 1 05050 20, 0 L =L
6 pm Spm 1 0 0 20 2000 Gl o= ]
8pm-10pm 1 0 1 0 O O O = 1
10pm-12pm 1 0 1 1 0 O 0 = 2
2m,- 2 ©6 .6 . -1 O 1 0 = 3
2am- 4am 0 1 1 1 0 O O0 = 2

Xj > 0, Integer j=12,...,7

The Circular Ones Example of Figure 8.1 Transformed by Q3

Figure 8.6
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i=1,2,...,7

XJ 2 0, Integer

The Circular Ones Example of Figure 8.6 with the First Constraint

Repeated as a Thirteenth Constraint

Figure 8.7
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Min 2}cxj

j=1 1
st xl Xz X3 Xa X5 X6 X7 RHS
bam- 6am O 1 1 O O O 0 = 1
6am~- 8am 0 0 O O 0 O 0 = 0
8am~10am O O -1 0 1 0 0 = 1
10 am - 12 m 0O 0 0 0 O O O = -1
12m - 2pm 0 -1 0 O0 0 O0 1 = 1
2pm~- 4pm 0 O O O O O 0 = -1
bpm- 6pm 1 O O O -1 O O = 0
6pm- 8pm O O O O O O O = 0
8pm~-10pm O 0 1 O O O -1 = 0
10pm~-12pm 0 0 0 1 0 0 0 = 1
12w~ 2ap -1 0 0.0 0 1 0 = ]
2am~- 4am 0 1 0 O O -1 0 = -1
bam~- 6am O O O0 -1 0 O 0 = -1

xj > 0, Integer 3 = 12,0007

The Circular Ones Example of Figure 8.7 Transformed by T

Figure 8.8
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W() = -UbI + Min (C + UaI)X

st X in S

where S is the set of solutions to the network flow
problem defined by A*X = b*., WH(U) is a concave

piecewise linear function and U is a scalar. Con-

i sequently, the subgradient optimization reduces to a

simple line search for a concave functior.
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CHAPTER 9

THE K DUTY PERIOD SCHEDULING PROBLEM

In this chapter we consider the K duty period
scheduling problem. Arfter describing the problem in
Section 9.1, vwe show in the next section that the
Lagrangean relaxation is once again a network flow
problem. In Section 9.3 we demonstrate that subgradient
optimization can be used to tighten the relaxation.
Finally, we interpret the iterative process of the

subgradient optimization.

9.1 The K Duty Period Scheduling Problem

Although thus far we have dealt exclusively with
the two duty period scheduling problem, it is quite
possible to extend our development to the more general K
duty period scheduling problem where K = 1,2,3,¢... The

foraulation would be
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(P) Min CX
st AX = b

X Integer, Nonnegative

vhere each column of A contains at most K segments of
ones, as defined in Chapter 2, the rest of the entries

being zero.

The first consideration is whether or not this is
realistic problem. There are a number of possible
applications. The first is simply the two duty period
scheduling problem on a continuous twenty-four hour
operation. This is analogous to the circular ones
problem discussed in the previous chapter. For
example, consider the problem of assigning drivers to
buses which run 24 hours a day. It is not possible to
formulate this problem as a two duty period scheduling
problem so long as, for each row of the constraint
matrix, there exists at least one duty period covering

that row but not starting in it.
Suppose we are concerned with Bus A. Any 24 hour
(or other) period need not have exactly two segments in

each column in the constraint matrix. See Figure 9.1.
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An Example of the Circular Ones Problem with Two Continuous

Duty Periods for Each Worker

Figure 9.1
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Whereas possible driver schedules correspond to one
or two segments (e.g. xl,xz) others might inevitably
lead to three sejments (e.g. x3). Due to thke wrap
around nature of the continuous schedule a duty period
might begin near the end of the column {e.g. 10 pm) and
terminate near the beginning of the column (e.g. 2 am).
This situation leads to three segments in the column.
Consequently, the three duty period scheduling problem
corresponds to scheduling personnel, each having at most
two duty periods in a given time period (a day), where
the job must be performed continuously from day to day.

It is not difficult to consider exanples of the K
duty period scheduling problem where K is greater than
3. Such a problem corresponds to scheduling personnel
to serve at most K duty periods in a given planning
horizon, for example five duty periods in seven days.
Such a problem would be a K duty period scheduling
problem in the case of linear time or a K + 1 duty

period scheduling problem in the case of cyclic time.
An interesting extension of this idea is that the
general M X N set partitioning problem can be viewed as

an [ (M+1) /2] duty period scheduling problem, where

208

e s




P ———

T

[ (M+1) /2] is the largest integer less than or equal to
(M+1) /2. This is simply because [ (M+1)/2] is the
greatest number of segments possible in a column with M

rows.
9.2 The Relaxation
Consider the K duty period scheduling problem (P)
(P) Min cxX
st AX = Db
X Integer, Nonnegative
vhere each column contains at most K segments. Our

relaxation will be to decouple the K segments in each

column to give K new columns each with one segment. The

relaxation is then a network flow problem. To create a

problem eguivalent to (P) one must add side constraints
forcing the K variables replacing each original variable
to be equal. We have already proved in Proposition 2.1

that (P') is equivalent to (P).
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x:- x;d-l =0 j = 1,.--,"; k = 1,.oo'kj-1
k
xj 2 0, Integer J = Vieeeel: k = 1,....,kj
k
3
vhere ch = Cj, 3= AosesyNis k. S KL
gy 3

A colunmn containing K segments in the original
problea (P) will correspond to K arcs in the relaxation.
If all of these partner arcs (correspornding to the sane
original column) have the same value in the relaxation,
then there is, in essence, no relaxation. The more the
partner arcs' values differ, the lccser the relaxation
will be. 1In this sense, we can say that the larger K
is, the weaker the network flow relaxation will be.
This is simply because the number of arcs has been

increased.
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9.3 Tightening the Relaxation

Once again it would be possible to use subgradient
optimization to tighten the relaxation. Consider the K
duty period scheduling problem (P') which may be

revritten as (P%)

N K
(P") Min Z % c;‘x;‘
£ in g 171 kol
K K+l g
st X{ X 0 3= 1,2u.,X

k = 1,w-—'kj-1
where S is the set of solutions to the network flow

problem given by the constraints
k

S
ZEA;‘x‘j‘ = b

j:l k=

—

Then the Langrangean relaxation of (P") is

u ks e
W) = min Y Y ckk o« ) 3 pkxk - gk,
Xins 371 kel i =1 k=1 3
k K k-1, ok
= C L L ¢ S R ¢ | X
Sins ﬁ;z = 3- Uy 1%y
o _ ky -
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1 ky 1l k
and U = (U),eee 01,05 0000,0) ’

1 K 1 k
X = ("1--"-"11'*2'"-'*11")

Since W(U) has the integrality property, ugx W (0) will

be equal to the linear programming relaxation of (P).

Consider the function W(U). This is a piecevise
linear concave function, since it is the pointwise
A
mininunm of a family of linear functions of U. Suppose X

= (x},...,xfl,x;,...,x:N) is optimal for W(U). Then as

: : Sk Skl .
ve have shown in Chapter 4, Section 4.1, (X - X ) is
a subgradient of W at ﬁ, vhere

sk ok+l 21 A2 ~kp-1 a k-1 Ak
X -.x = (xl = xlgooo’xll ood Xll,...-,x:N = XNN)

Consequently, ve may again use sukgradient

A
optimization to tighten our relaxation. Let W be the

target value. Then at iteration t + 1, wve define

otHl = gt 4 at(w - Wt sy |st?
vhere st = (xk - xkﬂ)t
Ak Ak :

(x - X ) at iteration t
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t t
where 4° satiafies 0 <ad £ 2,4 -> 0,

and z: at == .
t=1
9.4 Interpreting the Subgradient Optimization Iteration

To interpret the iterative step derfining the
multipliers at iteration t + 1, let us develop a little

terminology. Each variable X, in our original problenm

J
2.3

1
vas decoupled into k, variables (x_,xj,xj,...,x§i). For
i

]
each variable x?, define its PARTINERS to be its
PREDECESSOR x‘j“l, and its SUCCESSOR x‘j‘“, where they

exist (i.e. k # 1,kj). Define the ASSOCIATES of X; to

be x; , for all i # k, 15 i g kj‘ Now, at iteration
t + 1
k t+4l _ _k Ky t+l k=1, t+]
(Cj) Cj + (Uj) (Uj )
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!
|

Case 1: 1<k« kj
G N A A TR TS S IE AP L
| - @) " - afE - s st |sf)?
| =(c:§)‘+d[n—mnus“—(sj )tV | s
| b,
IR U TS J S SNt L

(@ihE . (i“) Vs
k,t

C R & - H(U)J[-(X'j‘ NE R m“)‘ -

(xk+l) v Istl

H Case 2: k =1 §
1 (c? e+l _ c;‘ I (u;‘) t+1 %
=8 - ;‘*(U“)‘+d£w-un)](s“)/|s‘|2 =
= )"+ af(i - Wt (x® - @ahty |5t |
i
Case 3: k =k ;
3 ;

t fh
(c;‘) 41 _ c* - e g

- ck - (u;‘“)‘ at[w - w(o 12s¥ N/ |82

= cpt-atte - b uaThE - @k ty (st
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Note for the case k, = 2, Case 3 above beconmes

b |
Case 3% k =k, =2

(€™ = cht-atu- v uaht - @bty |t

and Cases 2 and 3* define the iterative formula

t+l

developed in Chapter 4 for C for the two duty period

scheduling problem, where X; = Yj and xi = Zj.
Let us exam.ne the general formula given in Case 1

above. Recall

st = (sk)t j = 1"‘""'“: k = 1'¢-o‘k
3 j
Then
k,~1
s%]2 = ﬁ;: (s%)?
= = j
k,-1
& k _ Gk+1,2
f{i‘r: % Bine
So Istl2 is equal to the number of times a decoupled

arc is different than its successor. Note that in Case

1 above
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-2 2@ w20l - g2

Let Pt be the penalty at iteration t + 1

§ 2 . t t)2
P B W= Ky 3e et {
3
é
Then i
(C: )t+l= (C? )t + 2Pt if x? is in the current

solution but neitaer its suc-

cessor nor its predecessor is

1
€1 (¢

(S
rr
(2

) + P if x} is in the current solu-

tion and either its successor

or predecessor (but not both)

is also in :

(ck )t+1= (Ck )t if xk and its successor and
b b

predecessor are either all in

or all not in the current

solution
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+ k -
i (C} )t 1, (Cj )t - pb if x? is not in the current

solution but either its suc-
cessor or predecessor (but not i
both) is in ’

(C? )t+1= (C? )t =gp* gt x? is not in the current
solution ktut both its successor
and predecessor are in.

9.5 Summary

The K duty period scheduling problem may be handled
in a way analogous to tae two duty period scheduling

problem. By decoufpling the segments in each columa the

problem can be reformulated as a network flow problenm !
with side constraints. 1In the case of a set parti-
tioning problem the relaxation Lkecomes an acyclic ;
shortest path problem. When an arc is chosen to be in |
the solution to the shortest path relaxation, all of its

associates are also chosen. It is then possible to

eliminate all arcs (and their associates) which conflict

with these chosen arcs. Similarly, using the

backward-forvard iterative solution procedure for the
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shortest path problem, it is possible to eliminate arcs
vhich cannot participate in a solution better than the
best known solution. Of course, when an arc is

eliminated, its associates are also eliminated.
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CHAPTER 10

GENERAL METHODOLOGY

In this chapter we consider the general procedure
of decoupling columns to form problems auenable to
Lagrangean relaxation technigues. It is shown that tkLe
methodology is applicable to near block diagonal

matrices.

10.1 Solution Procedure for the Two Duty Period

Scheduling Problem

The previous chapters have been devoted to
developing a solution procedure for the two duty period
scheduling problem. In this chapter we try to examine
the methodology that has been developed and see to what

extent it may be generalized.

We began with the two duty period scheduling

problem (P):
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(P) Min cX
st AX = b

X Integer, Nonmnegative

vhere each column of A contained exactly two segments of
ones. As such, the problem could be handled only by
general intejer programming tecuniques. However, it was
recognized that by decoupling the columns, the problem
could be transformed into a network flow problem with
side constraints. These side constraints were very

simple, of the fcrm Y - Z = 0.

It was shown that by putting these side constraints
into the objective function, a very easily evaluated
Lagrangéan could be formed. Moreover, due to the simple
nature of the side constraints, the dual problem could
be solved very efficiently by subgradient optimization
techniques. The computation involved at each iteration
was very slight compared to solving the linear pro-
gramming relaxation of the original two duty period

scheduling problemn.
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10.2 Broader Applications of the Methodology
Developed to Solve the Two Duty Period

Scheduling Problenm

The technique used in solving the two duty period
scheduling problem was simply to decouple the columns to
achieve an easily solved problem with side constraints.
Are there other situations when the same thing might be

done profitably?

There is the immediate extemnsicn to all problenms
having at most two plus ones and two negative omnes in
each colunn, the other entries being zero. EFEach column
could then be decoupled into two columns each containing
one plus one and one negative one. The problem could
then be solved as a network flow problem with coupled
arcs. Similarly, any 0-1 matrix having at most four
nonzero entries in a column could be transformed to a

matching problem with coupled arcs [ Nemhauser (1978) ).

We look now to other applications of the decoupling
technique. Consider a block diagonal coefiicient matrix
with K blocks and with complicating variables (see

Pigure 10.1). Benders Decompositior is a well known
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technique for handling this particular problem. An
alternative method would be to decouple the complicating
variables. Replace each complicating variable X with K
variatles xk,'k = 1,.-.,K, where xk contains the entries
of the rows in the kth block in the block diagonal
structure of the easy variables. Add the complicating
constraints xk = xk+1 r k= 1,...,K-1. Then rather than
use Benders on the problem it may be advantageous to
dualize with respect to the new complicating constraints

and solve the Lagrangean relaxation with subgradient

optimization.

A special case of the near block diagomal problenm
is the mathematical programming protblem with staircase
structure, see Figure 10.2. 1In this problem vwe again
have K blocks. However, now each complicating variable
has entries in only two (adjacent) Llocks. Consegquently,
replace each complicating variable X with Y and Z where
Y contains the entries of the rows in the first bliock
covered by X, and Z contains the entries of the rows in
the second block. Add the complicating constraints Y =
Z. The problem now can be solved using Lagrangean

relaxation and subgradient optimization.
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A similar situation.arises for near block diagonal
problems with complicating constraints, see Figure 10.3.
Here we consider the simplest case of oaly two blocks.

Consider a complicating coanstraint

k N
) AT S Z a,.X . =b
gt B g YR

This constraint may be replaced by the two comstraints

x
jgl aijxj - Yi =0
N

j-fn a, X + Y =Db

to form an equivalent problem. If each of the compli-
cating constraints is replaced Ly two constraints in
this wvay, the problem has been transformed to a near
block diagonal problem with complicating variables (the
Y;). Then, as we have shown, the complicating variables
may be decoupled to solve the problem via Lagrangean
relaxation and subgradient optimization. This technique
may be easily extended to a near klock diagonal problem

vith K blocks and complicating constraints.
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